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- image regions corresponding to a partially occluded object and to produce descriptions of
object boundaries that are less aflected by occlusion. In addition, being able to distinguish

between occluding and occluded bpundaries is a crucial step towards determining the three-
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FINAL REPORT - STRUCTURE FROM MOTION
AFOSR Contract F49620-83-0140

a. Objectives.

Our principal objective continues to be the development of a robust computational approach
for estimating the spatial organization of a scene using time varying properties of image
sequences. Under this contract, we have been investigating improved methods for estimating
and interpreting optical flow from image sequences. Emphasis is placed both on what spatial
properties should be computed and on appropriate computational architectures for accom-
plishing this task.

Three related questions have been investigated in this project.
Estimating optical flow.

What sorts of errors are intrinsic to spatial-temporal gradient techniques for estimating
optical flow? The principal objective of this aspect of the work is to develop a priori
estimates of expected error based on the nature of the actual imagery, and a posteriori
error estimates as an integral aspect of flow estimation. In addition, the research effort
has focused on how flow estimation can be improved based on an understanding of the
nature and magnitude of the errors that are likely to arise.

Interpreting optical flow at object boundaries.

How can the analysis of optical flow be used to detect object boundaries? How can the
three-dimensional structure of object boundaries be determined based on optical flow?
The principal objective here is to work towards the development of motion-based seg-
mentation techniques for image understanding. Motion-based segmentation has the
potential not only for locating object boundaries, but also for reducing problems due to
occlusion and for providing three-dimensional information useful for object
identification and analysis.

Robust methods for determining object motion.
How can the motion of object relative to the camera be determined in a robust
manner? The objective is to categorize the possible motions into a limited number of
meaningful classes and to develop methods for recognizing instances of each class.

b. Status of research effort.

Estimating optical flow.

- We have shown that a major difficulty with gradient-based methods is their sensitivity
to a number of conditions commonly encountered in real imagery. Highly textured
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, surfaces, motion boundaries, and depth discontinuities can all be troublesome for
v . . X ) .
gradient-based methods. Fortunately, these problematic areas can be identified in the
. image. As a part of this contract, we examined the conditions that lead to errors,
< methods to reduce errors, and the estimation of measurement errors for onme class of
- gradient-based techniques. By understanding how errors arise we are able to define the
inherent limitations of the gradient-based technique, obtain estimates of the accuracy
of computed values, enhance the performance of the technique, and demonstrate the
\ informative value of some types of errors.
. This part of the project has now been completed.
'_-‘ Interpreting optical flow at object boundaries.
Significant results have been achieved on the problems associated with motion-based
- segmentation. Discontinuities in optical flow are necessarily due to surface boundaries
.. or discontinuities in depth in the scene. Thus, detected edges in flow necessarily
- correspond to important properties of scene geometry, where as edges in properties such

as luminance can be due to a wide variety of scene properties. Our approach is based
on understanding the three-dimensional scene structure leading to an edge in optical
G flow. As a result, we can simultaneously detect edges and determine important three-
dimensional properties of the associated scene surfaces.

Motion-based segmentation can not only find boundaries that are difficult to locate in a
single view, but it can also provide much more information about the structure of the
: scene. Our approach makes it possible to distinguish between occluding and occluded
- surfaces at a boundary. Occlusion boundaries arise due to geometric properties of the
occluding surface, not the occluded surface. Thus, while the shape of the edge provides
significant information on the structure of the occluding surface, it says little or nothing
Lo about the structure of the surface being occluded. This technique may make it possible
to link image regions corresponding to a partially occluded object and to produce

P AN

descriptions of object boundaries that are less affected by occlusion. Yo addition, being

; able to distinguish between occluding and occluded boundaries is a crucial step towards
J determining the three-dimension position of surfaces.

S

! Work is continuing on exploiting these results in a variety of image understanding

; tasks.

~tj Robust methods for determining object motion.

A_ Object motion can be classified based on optical flow into categories that are significant

for further interpretation. In our investigations, object motion was divided into four

. classes: two types of translation and two types or rotation. Complex motions can be
.- described as combinations of these types. The descriptions are qualitative, characteriz-
B ing the motion in terms of broad classes but not providing precise, qualitative informa-

g tion about trajectories. We have shown that under some circumstances, the categories

¢ are detectable using simple diflerential operations on the optical flow field. Appropriate

combinations of detectors can be used to signal motions likely to lead to a collision
o between the sensor and an object in the field of view. By structuring the technique as a
s classification operation involving only a limited number of classes, the noise sensitivity
Y
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of differential operators can be reduced. For the situations in which the technique is
applicable, it is tolerant of noisy, sparse flow fields and requires little information about
camera models, motion constraints, or possible objects.

As a result of our research efforts, we discovered that the assumptions required to util-
ize this approach are not sufficiently realistic. We are currently pursuing alternate
approaches to the determination of object motion.

c. Publications.
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An Error Analysis of Gradient-Based Methods for Optical
Flow Estimation

Joseph K. Kearney

University of Jows

Williem B Thompsor,
Daniel L. Boley

University of Minnesota

ABSTRACT

Multiple views of a scene can provide important information about the structure
and dypamic behavior of three-dimensional objects. To recover this informatiorn. it is
pecessary to estimate optica! flou — the velocity, on the image, of visible points on
object surfaces. One approach for estimating optical flow is based on the relationshij
between the gradients of image brightness. While gradient~-based methods have been
widely studied, lLittle attention has been paid to accuracy and reliability of the
approach.

We examine the sources of errors in estimates derived from gradient-based tech-
piques. By understanding how errors arise, we are able to define the inberent Limita-
tions of the technique, obtain estimates of the accuracy of computed values. enhance
the performance of the technique, and demonstrate the informative value of some
types of errors.

1. Introduction.

The velocity field that represents the motion of object points across an image is called
the optical flow field. Optical fiow results from relative motion between a camera and
objects in the scene. Methods which estimate optical flow lie within two general classes.
Gradieni-based approaches utilize a relationship between the motion of surfaces and the
derivatives of image brightness [1,2,3,4,5,6,7,8,9,10. Matching techniques locate and
track small, identifiable regions of the image over time.

For many problems gradient-based methods offer significant advantages over matching
techniques. Matching techniques are highly sensitive to ambiguity among the structures to
be matched. Optical flow can be accurately estimated for only highly distinguishable regions.
This means that flow cap only be determined at & sparse sampling of points across the image.
Furthermore, it is computationally impractical to estimate matches for a large number of
points. The gradient-based approach allows optical flow to be simply computed at a more
dense sampling of points than can be obtained with matching methods.

This work was supported by the Air Force Office of Scientific Research coptract F49620-83-0140
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Gradient-based techniques avoird the dificolt task of finding drurngushata repione oo

points of

interest  The gradient approact leaas o slgorithme wiicl are characterizec b
simple computations locahized to small regions of the image  Thest techniques car be applied
over the entire 1mage As we shall see iv the aualysis that follows. the gradient technique )
also sensitive to ambiguous sreas -- it 1s impossible to locally determine the motion of &

" homogeneous region However, gradient-based estimates are typically available over s
greater area than those obtained reliably by matching. Ib addition, the losc of precision for
gradient-based estimates in ambiguous areas can be quantified. Accuracy measurements car
be used to weight the contribution of motion estimates in further analysic or to filter poor
estimates f{om the fiow held. These accuracy measurements can be obtained as & by-product

of the flow estimation process and require little additional computation.

While gradient-based methods have been widely studied. httle atientior ba< beer paid
to accuracy and rehability of the approach. A major difficulty with gradient-based methods
1s their sensitivity to conditions commonly encountered in real imagery. Highly textured sur-
faces, motion boundaries. and depth discontinuities can all be troublesome for gradient-based
methods. Fortunately, these problematic areas can be identihed in the image. In this paper
we examine the conditions that lead to errors, methods to reduce errors, and the estimation
of measurement errors for one class of gradient-based techniques By understanding how
errors arise we are able to define the inherent limitations of the gradient-based technique.
obtain estimates of the accuracy of computed values, enhance the performance of the tech-

nique, and demonstrate the informative value of some types of errors.

2. The Gradient Constraint Equation.

The gradient constraint equation relates optical flow — velocity on the image (v v} --
and the image brightness function I(z,y,t). The common assumption of gradient-based
techniques is that the observed brightness — intensity on the image plane — of any object
point is constant over time. Consequently, any change in intensity at & point on the image
must be due to motion. Relative motion between the object and camera will cause the posi-
tion of a point located at point (z,y) at time t to change position on the image over a time
interval &¢. By the constant brightness assumption, the intensity of the object point will be
the same in images sampled at times ¢ and t+61. The constant brightness assumption can
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1 be formally stated as i
4 ~
3 -
Hz,y,t)= I(x+bz,y+6y,t +ét). (1) 3
Expanding the image brightness function in a Taylor’s series around the point (z,y,1)
i we obtain .
d -
al 2 al .
1 bx y+by 1 46t)=T(z,y0)+ — bz + — by + — &t + ho.t (2) .
(7 +éx,y +&y )=1(z,y.t)+ — 5, %Yt 5 (2)
: P
A series of simple operations leads to the gradient constraint equation: B
-
-3
4
'.'.':.' '-\..'-;.’;I-;"Al'»:_"“.";_‘.-".:'A;'h;'-;'-...{‘_:':;.";.l.x f:.ilr_{':_{':":t'.' 1';{-1';;’._: “:1.\1'.;":(';4'--/' .x";i’::f..;'..;‘:g':;.«A”:;";:_(::;: ;';.:'--;\f'-;:;'\. 'j
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3. Gradient Based Algorithms.

The gradient constraint equation does not by itself provide a means for calculating opt-
cal fiow. The equation only constrains the values of v and ¢ to he on a hine wher plotted 1n
flow coordinates

The gradient constraint is usually coupled with at assumption that nearby points move
10 a like manner to arrive at algorithms which solve for optical flon. Groups of neighboring
constraint equations are used to collectively constrain the optical fiow at a pixel Constraint
lines are combined in obe of three ways. Methods of local optimization [5, 6, 7, §. 10; solve 4
set of constraint lines from a small neighborbood as a system of equations. Globa! optimiza-
tion [11, 3.9 techniques minimize an error function based upon the gradient constraint and
an assumption of local smoothness of optical flow variations over the entire image. The clus-
tering approach |1.2: operates globally, looking for groups of constraint lines with coinciding
points of intersection in fiow space.

We will examine the local optimization technique in detail. Although we will not
directiy address clustering and global optimization, many of the conclusions reached here also
apply to these approaches. Another paper examines some implications of this apalysic for

global optimization methods [12;.

4. Local Optimization.

The method of local optimization estimates optical flow by solving a group of gradient
constraint iines obtained from a small region of the image as a system of iinear equations
Two constraint lines are sufficient to arrive at a unique solution for (u,v). More than two
equations may be included in the system to reduce the effects of errors in the constraint hnes
The solution to the over-determined system may be found by any of a number of error
minimization techmiques.

We will examine errors in the solution of two equation systems. ln practice one should
solve an over-determined system by some method of best fit, such as least squares. The
analysis presented bere is extended to over-determined systems in {13,.

The pair of equations whick we will solve to estimate optical fiow at point

P, = (7,,5,4)1s

AN AUy KR PR A

(J') ],U)u + I,(’)r — _]l(;)

(4)
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where the gradwnte L0 8nC I moeguatione + 8DC ) &7t evalualec Bl p, BIC & Leatiy
poili P

Tue gradieots 1 the system (4) are estimated fron: discrete images and will be wwacce-
rat¢ due to poiss 1 the imaging procesc and sampling measurement error  Alsc. the value:
of (v.t} at p, aud p, are assumed to be the same. The formulation will be Incorrect to the
extent that optical flow difiers between the two points. We will examine how gradient est:-
mation error and error resulting from non-cobstant optical fiow leads to errors in the

estimated flow vector

4.1. Gradient Measurement Error.

The estimates of the intensity gradients Z,, J,, and 1, will be corrupted by errors ir the
brightnesc estimates and 1naccuracies introduced by sampling the brightness function
discretely ip time and space. The error in the brightness function is random and resulis from
a variety of sources such as channel noise and quantization of brightness levels We assume
that the brightpess error is approximately additive and independent among neighboring pix-
els. The gradient, estimated from changes in the brightpess estimates, will contain 8 com-
ponent of random error which is distributed like the error in the brightness function. The
random component of the gradient error will be additive and independent of the magnitude

of the gradient to the extent that the brightness noise is additive.

The brightness function i1s sampled discretely in time and space and this will introduce
a systematic measurement error into the estimates I, f,, and J, of the gradients. The gra-
dient sampling error depends on the second and higher derivatives of the brightness function.
To examine the sampling error in [, we expand the brightness function evaluated at
(r +Az,v,t) around the point (z,y,t) producing

Hz+Az,y,t)=1(z,9,t)+ 1,A7r + I, Az° + hot (5)

where I, | I,, are the partial derivatives of brightness in the z direction evaluated at (z,y,t).
Rearranging terms we obtain an estimate for the brightness gradient in the z direction:

o ](: +A7,!I ot -)_1(2 34 ,f)
‘ Az

I, =1, + 1,07 + hot (6)

The error ¢; (yampie;) 18 defived as I, - 1,, the difference between the computed and true

values. From (6). we obtain the approximate relationship

‘I' (sampling ) =~ 1:: Az . (7)
\d
f Likewise, the sampling error in the estimates of /;, and J;, are approximately given by
-~
- R
p_..'-_ (l,(umylmp) = In A_l/ (8)
i_,\_
A
" €] (sampling ) = 1:( At (g)
:«-S The samphug error for the spatial gradients depends upon the spatial resolution of the cam-
:-":- era, Ar and Ay, and the second spatial derivatives of the brightness function, I, I,.. The
L‘- “
Lj,‘:'_ l}
PO ‘
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samphing €rror fOr the Lemporal £1adiehl ) pmpe; o & Ifuenced by the frame rate At src-

tte bigper order derivatives of the brightpess function over um-
We car expres: ¢ uemmat PUrely 1L terme of spatisl dernvauves and mouioy
Difierentiating the gradient constraint equation (3) witk respert t¢ 2, 3. &nd t we obtai: th-

. following three equations

o ot

],,t "1,—‘,;7*1,,1 +1'_¢:j_:—=—]“ “0]
ae o

Iy *],—a—;-i’]”!‘ +I'—5;'=—1,, (11)
o _ ot

Iev - L—~ It -.»1,-—63 = -l . (12

Where the second derivatives of the brightness function exist and are continuous, the lefi-
band sides of equations (10} and {11) can be substituted for I, and I, in (12). Collecung

terms we see that

LI B U b
| S a’ 6" 1' - ('_” b’ 1’ = '-Jn - (13}

The first term in (13) depends upon optical flow while the rest of the left-hand side depends
upon the derivatives of optical flow over time and space. If optical flow is approximately
constant in a small neighborhood and approximately constant over time at each point ou the

[u v] [;: ;:} [:} =1, . (14)

Note the similarity between (6] and (14). We have derived s constraint equation for second

derivatives that is analogous to gradient constraint equation.

image then

Without loss of generality, we can rotate our coordinate system so that the fiow vector

at a point lies along the 7-axis. In the new coordinate system we have

.
-

v g7 = ]‘, . (15)
) It is evident from (I5) that the magnitude of 1, depends upon monhnearities of the bright-
R . . . . . . .
N ness function in the direction of motion and the magnitude of motion.
'b\-.. . . -
RO In summary, the systematic errors in the gradients whick make up the coefficients of (4)
a‘ . . - . . . .
“ are given by (7), (8), and (9). lo general, the systematic error in estimating 7, is influenced
-!v‘ by tbe magnitude of optical flow and the derivatives of optical flow and the first and second
A R . . . . . .
oA spatial derivatives of brightness. When the axis of coordinate system is aligned with motion
::ﬁ:t_' and optical flow is nearly constant over time and space we can characterize the systematic
YN error in the temporal derivative by
SN
!
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If there 1c siguificant optical fiow. the error giver by (16) car become quite larg: 1
regions whicl contain nonlinesrities 1 the brightpess funcuior and substanuialis alter ou:
estimate of [,
4.2. Nonuniformity in the Flow Field.
The estimation scheme we have been analyzing assumes tbat velocity op the 1mags
plane i1s constant in some small neighborbood Thic will be true only for very special surface<
and motions. When optical fiow 1s not constant the method can provide & good approxima-
tion where flow varies slowly over small neighborhoods
The true set of equations in (4) should actualiy be
JAUN + 1,60, = 1) !
LUl ~ Av) + LU+ Ac) = - ) (a7) {
where the actual fiow vectors at points p, and p, are (v ,v) and (v +4u ,v +A¢ ). respectively,
and the gradients are estimated at points p, and p,. The difference between the true solu- 1
tior and our estimate can be treated as an error on the right-hand side of (17) by distribut-
ing the multiplication on the left-hand side of the system and rearranging terms ac :
LWy 5 16l = _p0) i
LUy + ].(J')r = - (J').HA“" (18) ]
where
. . Av . L
Carie = (LU, L) [A} (19) ]
Thus, the error caused by violatior of the constant flow assumption can be treated as an ‘
additional error in the estimate of I, . b
To examine the significance of this error, we will consider size of ea . relative to 7,0\ .
- But first we will convert to vector notation. Let 4
= .
-. o) 1'(1) 3 Avu
- gl) = IS w= ] 1 and Aw= |, (20) ’
- For the constraint equation at p,, we know from (17) and (19) that 3
).
[ ] €Afles - '8' Aw‘ (,,1) i
A ' g (Bw+w) ' ;
N
1
’
_ | Aw ]| cosé, (22) j
|| Aw+tw || cosb; {
i 1
:: where 6, is the apgle between the gradient vector, g’ and the local change in optical flow, {’
. 1
- ]
ﬂ
! [
s -
. - .
f
AN - e e T e P , . IR B E P N .- et <‘I
N I o O A S o B T S S e ST R R




- i el T T Y S S B A A Sl Sl Fah M”20 O e ante 4 T T
L A A B DA% e Vb et Kt MANOEM S A AR g A Gtk e Y A0t o ul tal Ak el At At Al S P g ) sue sde i )
e I S e ] - e e T

{

Au 8nC 6 1 the mugle betweer the gracient vector. gt . snd the vector Au- .o

The relative error 1 I, depends upor the relative lengthe of the vectors « anc A. anc
tne degree to which eack 1« magnified by the spatial gradient In general the onentations of
the spatia! gradient. optical fiow. and the local change 1 optical iow will be independent
Sc the spatial gradient will on the average magnify the fiow vector in the sam¢ proporuion a:
the change of fiow vector Therefore. on sverage. we expect the relative error 1o I, to be
strongly related to relative magnitudes of the fion and change of fiow vectors

Ir most scenes. flon will vary slowly over most of the image. At surface boundaries we
can expect to frequently find discontinuities in optical flow duec to discontinuities 1 motior
or deptl:. Here, the variation 1 fiow will contribute & substantial error and fiov estimates
wili usually be quite poor. However, much of the image will consist of smoothly varying sur-
faces. When neighboring image points lie on the same smooth surface, fiow wili geperally be
similar and hence, the error contributed by variations i fiow will be small.

We will consider ap example whick allows arbitrary three-dimensional translation of &
planar surface to demonstrate the important factors influencing the error contributed by
variations in optical flow. We consider two peighboring image points that lie on a surface
translating with velocity (U,V,W) in three-dimensional space (see Figure A 1). Let the sur-
face be defined by the planar equatior

ZIX.Y)=FR +aX + BY . (23

In appendix A we derive the following approximate bound

™ P
o < 1o (e8] eI (24)

where,

tm,’:_ﬂ_(A_’}.A_yM.L_ (25)

The angle + is the angle subtended by (Az, Ay) with a focal length of f; this is simply the
size of the neighborhood measured in degrees of visual angle. The length of the change-of-
fiow vector relative to the length of the fiow vector depends upon the size of the neighbor-
bood. the slope of the surface viewed, and the ratio of velocity along the hine of sight to velo-
city perpendicular to the hne of sight.

Recall that the value given by (24) represents a rough measure of the proportion of
error on the right-hand side contributed by variations in optical flow. If the pneighborbood is
small we expect random errors in the temporal gradient to usually be larger than the error
caused by flow variation. The gradient measurement errors discussed in the last section may
lead to much larger degradation. So, for most of the image the error caused by variation in
flow should not constitute a problem. However, &t surface boundaries optical flow can

change dramatically, especially when object motions are allowed. Here, the local optimiza-

tion result will be a very poor measure of optical flon.
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4.3. Ili-conditioning.

The asecuracy of the esuimatles 8 8Ld ¢ wili depeud or the measurement errors 11 the
gradient consiraint equations anc the error propagation charscteristics of the hinear svsten.
Wher a system of linear equstions 1s very sensitive Lo smali errors 1 the coeflicients o

nght-band sid¢ 1t 1s said to be ili-conditioned. If the spatial intensity gradier i change slow]s

ther the hnear system will contain cobstraint lines that are nearly paralie]l A< a conse-

quence, the svstem will be nearly singular snd small errors 1o the gradient measurements
may result iz large changes iv the estimated fiow value. We will ind that the conditioning
of the linear svstem largely depends upon nonlinearities in the brightpess functior which are
perpendicular to the brightness gradient

If the gradients are knowrn exactly and optical fiow s constant then

Gw=-b (26)

I,(') ],(-) « ]x(-)
Lo 0] o @= ] wd b= (27)

As before, the rows of G and b are taken from & point p, and its peighbor p;. The vector w

where.

G =

will be in error to the degree that the gradient measurements are inaccurate and optical fiow
varies betweer points p, and p,. The previous section showed that the error accrued when
v and v are pot constant is the same as that which would be obtained if the b vector is suit-
ably modified as in (18). This error will be absorbed on the right-hand side of (26). Thus.
the system which is actually solved ic

(G + E)(w+ éw) = (b + éb) (28)

where,

(29)

The errors in the spatial and temporal gradients arise from both systematic and random
measurement errors.

A number of measures of conditioning bave been proposed [14]. The most widely used

index of conditioning is the condition number, cond (), which is defined as<
eond (G)= |G| [IG™|i (30)

for a matrix of coefficients G. The condition pumber roughly estimates the extent to which
relative errors in the coeflicients and the righthand side are magnified in the estimate of
optical flow. For the problem at hand. the conditioning of the matrix G 1= determined by

the nature of the spatial brightness function over the interval (p, ,p; ).

The inverse of G can be directed calcylated as
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" where g’ 1s the spatial gradient vector at p; and ¢ is the angle between g’ and g'’

Before we can evaluate the condition number we must select a8 matrix norm. We will

use the Frobeuius norm'. We will continue to use the |- || . norm to evaluate vector norms.
From the definition of | - |; » and the results above we have
[ e “ (J)J‘ .
cond (G) = -”-——l 33
()= e e IFeme (33)
[ Leni, Leot )
= — , L 34
sne (&1 T g™ (34)

The magnitude of eond (G) depends on the orientations and relative magnitudes of the
two spatial gradient vectors. The value of econd(G) is minimized when the spatial gradients
are perpendicular and bave the same magnitude. As the spatial gradients become more
nearly paralle! the magnitude of cond(G) is increased, and hence, error propagation is wor-
sened. Increases in the relative difference in the magnitudes of the spatial gradients also
cause cond (G) to increase. The magnitude of this eflect will not usually be important. If the
neither of the gradients is very small, then the relative sizes of the gradients will not differ
enormously. The gradients will be poorly estimated where they are small, so for multiple
reasons estimates will be error prone in these regions.

The most important factor determining conditioning is the angle between the gradients.
Where the gradients are nearly parallel, conditioning will be a problem. Thus, if both points
lie along a straight edge, we cannot obtain a solution. (This is an example of the aperture
problem |11}).

Some higher derivatives of brightness must be large for there to be a significant change
in gradient orientation over a small neighborhood. Let Ag be the difference between the two
gradient vectors. We can expand the gradient in & Taylor series

0) — gl [14" 1'5')} Az] h 5
e =8+ |10 jol|ag] o.t. (35)
Consequently,
I,ﬁ') Iyi') Ar
Ag = [1,;') 1’;})] Ay] . (36)
! The Frobenius norm. || - || 5, is defined as the square root of the sum of the squares of all the
elements The Frobenius norm can be used to bound the more famihiar J| - ]| o porm [15) 1t can be
shown that
e < Bl< DD
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Toe angle betweer the gradients depends oL the componernt of Ag that x perpendiculas 1
g - If opuca! fiow 1= to be accurately esumated w s smali regiol around p" . ther at leas:
one component of the second derivative perpendicular to the gradient must be large  There
mus: be at Jeast some direction iL which we can select a neighbor so that the gradient orien-

wation g'’! will differ from g"".

4.4. Combining the Sources of Error

We povw face & dilemma We have just shown that some component of the second
derivative must be large to minimize error propagation. However, we earlier showed that
sampling errors in the gradients were proportional to the the magnitude of the second deriva-
tive. There i1s a tradeofl between the gradient measurement errors and conditioning. The
problem would not be too serious if we were only concerned about errors in the spatial gra-
dients. If we let the sampling interval be reasonably small with respect to the neighborhood
from which we select our equations, we can potentially satisfly both goals -- the gradient can
change slowly from pixel-to-pixel but the total variation over the neighborhood can be large
enough to allow acceptable conditioning.

A serious conflict can arise in the tradeofl between conditioning and sampling errors in
the temporal derivative. Recall that the systematic measurement error in J, is proportional
to nonlinearities in the spatial brightness function (13). To achieve acceptable conditioning.
the spatial brightness function must be nonlinear in some direction. If optical fiow s
oriented in this direction, then the condition number and measurement errors will be
inversely related. Increases in the magnitude of the second spatial derivatives will reduce the
condition number and increase the measurement error. Note that there need pot be a
conflict; optical flow can be perpendicular to direction in which the gradient orientation is
varying.

The problem is heightened by the sensitivity of measurements where the flow vector is
large. The systematic measurement error in the temporal derivative increases as the square
of flow magnitude (13). Where flow is large, even small nonlinearities can contribute
significant measurement errors. However, where object points are stationary or moving
slowly, the measurement error in the temporal gradient will be negligible and most accurate
estimates will be obtained the gradients are not small and vary rapidly.

As ap illustration of the interplay between the concerns of conditioning and measure-
ment error, consider an image painted with an isotropic texture. If the region is stationary
then a large amount of detail will be desirable to minimize conditioning. If optical fiow is
significantly greater than zero, then too much detail will lead to unacceptably large measure-
ment errors. A balance must be struck between these two sources of error.

The conditioning of G can be improved by using a large neighborhood. The risk in
choosing neighbors over too great a distance is that the error due to non-constant flow can
become very large. If the neighbors lie on a single surface the contribution of errors due to
pon-constant flow will usually grow slowly with neighborbood size. But if neighbors lie on
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difierert surfsces therr motions may difier substantially  Ac raghborhond g12¢ 1¢ increased 1

becomes more hikelv that neighbors will he across a surfare boundary snd the difference u
opuical fiow will lead to siguificant errore

Tbe total error 1 the flow estimate ic determined by the characteristice of the optica’

flon field. the nature of the brightness function. and the selection rule for constructing the

Iinear svstemm The sources of error are summarized in Table 1.

Error Source Determinants

1 Gradient Measurement Error
1+ (a) random (/, .1, .1 ) (1) 11 sensor poise

(1) 11 quantization poise

(b) systematic (/) (i) 11 ponlinearities in the brightness
function in the direction of
optical fiow

(ii) 11 optical flow magnitude

2. Non-constant Flow (1) 11 neighborhood size
(1i) 11 surface slant
(i11) 11 ratio of velocity along the
line of sight to velocity
perpendicular to the line
of sight!

3. Ill-conditioning (i) 1] neighborhood size
(i) 1] sin of the angle between the
spatial gradient vectors
(ii) 11 relative difference in the
magnitudes of the spatial
gradient vectors

11 error increases with determinant
11l error decreases with determinant

! for translating surfaces

Table 1. The sources of error i local estimates of optical flow.

These factors interact in a complex way to determine the accuracy of the local optimization
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scheme  Only where the contribution of thest sources of error 1¢ balanced wil gd ectimate

be obtaiped

6. Algorithm Extensions Based Upon the Error Analysis.

We next consider how knowledge about the causes of errors cau be used o reduce error:
and introduce techniques to judge the sccuracy of estimates The improvements iv perfor-
mance are based upon parameter selection and preprocessing of the image t¢ extract the
most information from a region while minimizing the intrusions of error. A method of iters-
tive refinement (5, 16. is also described

By -examining the image sequence for the conditions which lead to errors we can judge
the accuracy with which estimates can be made before the estimate is actually made. Exami-
nation of the flow estimate itsell can provide additional information about the precision of
the estimate. Together, o priori and o posteriori estimates of accuracy provide a useful

beuristic for evaluating the precision of optical fiow estimates.
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5.1. Error Reductior Techniques

5.1.1. Smoothing

Biurring the image will reduce nonlinearities in the brigbtness functior and cons:-
quently diminish the systematic error in the gradient estimates. Blurring will alsc worser the
propagation characteristics of the linear system causing random measurement errors and the
errors due to non-constant fiow to be magnified Hence, blurring is desirable only ip regions

where the systematic error is predominant.

R AR AANRMAA ceullaR § RS

As poted in the last chapter. the systematic error in the gradients depends upor the
nonlinearity of the brightnese function over the sampling interval. For the temporal gra-
dient, the systematic measurement error depends upon the linearity of the brightness func-

Tt A

tion over the region which moves past a point of observation on the image and the variations
of optical fiow over time and space. Blurring will be most effective in portions of the image
which undergo a significant motion and contain large nonlinearities in the brightpess func-
tion. The degree of blurring should be sufficient to approximately lhinearize the brightness
function over the regior of translation.

The damage which blurring does to the conditioning of the linear system can be
counterbalanced by increasing the size of the neighborhood over which the system is con-
structed. The risk incurred by enlarging the area from which the constraint equations are
drawn is that the motions of the points may differ significantly, as could happen if points lied
on two different surfaces. The selection of the radius of blur and the neighborhood size must
be made judiciously so as to avoid increasing the error in the solution vector.

5.1.2. Over-determined Systems

Until this point we have ignored the problem of selecting the direction in which the
neighbor is to be chosen to form the linear systemi. From our previous discussion of error
propagation it is clear that the choice of direction can dramatically affect the error in the
optical flow estimate. Ope way to circumvent the difficulty of choosing an appropriate direc-
tion is to construct ap over-determined set of equations from points in many directions. The
over-determined system can be solved by minimizing the residual over possible values of opti-
cal flow. The choice of the norm to be minimized and the minimization scheme may be ar
important determinant of the error, but are not analyzed here. As with two equation sys-
tems, conditioning will be important for over-determined systems and conditioning will be
related to the same characteristics of the image as in the two equation case. Another

approach is to perform the analysis separately in a number of directions and then seek a con-

sensus among the solutions (17].
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65.1.2. lterative Registratior.

1" opuzs’ fiow 1 hpowr spproximete!s tueir thic hnowiedpr car be uses 1o reguee tr-
error 1 the Joca' optimuzstior techomigue  We develo s more genera! forn o the gradier
constralnt eguatior that solves for the difierence betweer ar spproxumate estimats &nd the
sctua! fow  Our derivatior sbbreviates av analysic presented by Faquin ard Dubois [1€

Consider the mmage sequence that samples the three-dimensions) image function — g
pictured iv Figure 1. We actualiy estimate the displacement of & point betweer successive
samples of the image sequence. 1f velocity is constant then the displacement observed on the
image over the tune interval At 1s (vAt,0At) Let d be & displacement vector i1 3
dimensional 7,3 ,t-space Let d be an estimate of d Given & displacement estimat«

. v Ot 7 -component of displacement
d= |7 At| = |y-component of displacement (37)
ot { ~compornent of displacement

we can estimate optical fiow by (¢ ,¢).

The vector = Is a unit vector ip the direction of the estimated displacement Tre

(df
gradient of 7 iv this directior 1=

ar |k 1
lo=—— 1] | = ———(I,8 +1, ¢ +1,)At (3%
IR AREL i ’
1 . . .
= -"—(,”T—(I, ¢ +1 i -1,v-] v)At (using (3)) (3¢)
1
= —”—aﬂ—(l,bl' +1, év )Al (40)

where éu ={ -+ and é =i -v are the errors in the estimated flow velocities. Finally, we get
an expression that relates the error in the displacement estimate to measurable brightnes:

gradients
- 1: -
hdlllg= LésAt+1,6t 80 = |1, |-Ad (41)
0
where
) & At
Ad=d-d= |& At]. (42)
At '
We can compute an estimate of the quantity (41) by using the Taylor expansior
J(z+i Aty +i AL+t )= T(z,3,0,)+ [[d] 1. (43)
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Sobving for 7, auc combining with (411 vields the approximatic
]n ) bu — . .
] it At = Iz~ At y~c bt 4,~AL)-I(3,9.1)) (44
’

The pew constraint equation (41) 1s a more geners! form of the gradient cobstraint
" equation. The more geperal form relates the gradients in an arbitrary directior to the spatia’
gradients and optica! fiow. If the displacement estimate is (0,0,A¢1). then /5= J,.

We can use the general form of the gradient constraint equatior to refine ar estimate d
by solving (44) for Ad. This process can be performed iteratively to find successively better
estimatet of optical flow. Ap improvement cat be expected. on the average whenever suc-

cessive registrations are closer to the true displacement vector.
lad, ., {f < llad, | =12, (45)

The improvement arises from successively better estimates of 7, As was demonstrated ear-
lier in equation (13) the systematic error in the estimate of temporal derivative grows as the
square of flow magnitude. The same relationship is true for direction derivative /4 and the
fiow difference in the general constraint equation.

Solving for the difference between an estimate of optical iow and the true optica! fiow
s computationally equivalent to registering a portion of an image pair and estimating the
change of position in the adjusted sequence. For this reason the technique has been called
sterative registration |5, The estimate of optical iow may be derived from estimates made

at some previous time or from prior processing on a single frame pair.

Note that if the inequality of (45) does not hold, then the error might be expected to
increase. If an estimate of optical flow is poor then the refinement efiort may lead to an even
larger error. The next section is devoted to methods to evaluate the quality of optical fiow
estimates. A measure of the accuracy of a flow estimate can be used to judge whether or not
the estimate should be used for registration. Alternatively, the degree of registration can be
base on the confidence put in the flow estimate, the more accurate the estimate is judged to
be, the more that the frame pair should be adjusted in the direction of the estimate.

The iterative registration technigue can be combined with variable blurring to produce
a coarse-to-fine system for estimating optical flow [5]. Flow is roughly estimated with an
image sequence which has been blurred so that the brightness function is approximately

linear over areas the size of the maximum expected displacement. The coarse estimate of

resolution. This process is repeated at successively finer levels of resolution.

How much advantage can be gained from iterative registration? The spatial variation
of optical flow will not be aflected by registration. Thus, the error due to incompatibilities
among equations in the linear system is upaflected by iterative registration. Also, the esti-

>

F optical low 1= used, at each point, to register a small region of the image at s finer level of
!

|

b

\

mate of the directional gradient will contain some amount of random measu-ement error

even if successive frames are 1o perfect registration. The propagation of these errors depends

R P S A T TRP : s g cea R e
- . . .- PRI . PRI N R S e . ST e
. Lkt tn o Catn e g d o

‘e \ . - - \ . - .-‘ B . Q,.- - . - . - .
AW IR IEAN WIS IF I SIS ST I A IRIEIE o

« o, .
LN ¢ 7 ST P N P




B N R e o —— Ty
-y
pricery updr the conditioning ©f | G| . whick 1 pot intuenced by regisiraticn We cgr-
noi expect tc reduce the error 1 d below thast caused by randon. erre: 1 Iy 812 nor
constant flow through nerative registratior

While preforming & coarse-to-fine registratior the degre¢ of blurring at eact stage |
should be appropriate to the expected error iv optical flow st the next more coarse Jeve) of !
analys: Ir the absence of knowledge about the motions of individus! points the biurring
must be performed uniformly across the image. While the error will, on the average. be
reduced for points which translate significantly, the error will tend to be increased for points
whick are stationary or move very httlc. No benefit is obtained by hinearizing the brightness
funcuion-at_stationary regiops and the error propagation characteristics are worseped. Som¢
of the accuracy lost at stationary regions during coarse processing might be recovered at fipe
levels but. 1v general, the best estimates could be obtained at & fine level without registra-
tion. v the next section methods are developed to estimate the accuracy of optical flow esti-
mates This wformation can be used in the coarse-to-fine system of iterative registration tc
judge whether an improvement has been obtained at each level. A priori estimates of the
magnitude of fiow are also developed in the mext section. The iterative registration technique
can be mmproved by adapting the technique to kpowledge about the accuracy of estimates

and the magnitude of motion.

5.2. Estimating Error

Many of the factors which lead to errors in the local optimization estimation technique
can be identified and measured from the image. The error propagation characteristics of the
linear system can be estimated from the matrix of spatial gradients. The degree to which
relative errors are magnified s indicated by cond(G). Regions of the image for which the
propagation characteristics are poor will be very sensitive to small measurement errors in the
gradients. The optical flow estimates obtained in these regions are likely to be inaccurate.

The systematic measurement error in ; was shown to depend upon the linearity of the
brightness function in the direction of motion (13). One way to measure of the nonlinearity
of the brightness function is to compare the spatial gradients of brightness ip successive
frames |2,5,. If I,(z,y.t) is sigpificantly different from I, (z,y,t+6t) then it can be inferred
that the estimate of the temporal gradient is likely to be in error.

Once an estimate has been obtained we can bound the error by referring back to the

image. The following aposteriori error bound can be derived from (44): e

I(z+8 Aty +i At t+AL) - I(z,.1,) <

L5 )

If the porm of the spatial gradient is not too small, this will provide a good measure of the

magnitude of the error in the flow estimate.

(46)

1 (6 be) |l At 2
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If an over-determined set of equations is used to estimate optical flow, then measure-
F ment errors in the gradients and incompatibilities among the constraint equations due to
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difierertial motior wil. be refiecied 1 the residua! of the solutinr The residus’ vector car b
estimatec b
Gi-b=r (47

where <« 1 the estimated optical fiow and » is the residua! A large residua) indicates tha:
substantia) errors exist 1o the system and that the estimated fiow vector is likely to be 1pa--

curate

The residual vector will be especially large at occlusior edges where the change in fiow
1s discontinuous It has beer proposgd that the residual error be used as< an indication of the
presence_of ap occlusion edge 10. To be identifiable, the change in optical flow scross ar
occlusior edge must lead to an error which 1s greater than that pormally encountered fron.
other measurement errors A threshold on the residual must be established which wili por-
mallv be exceeded onlv at significant discontinuities in the fiow field. The error accrued fron:
a change :p the flow vector is equivalent to a measurement error on the right-hand side of
the Jocal optimization syvstem. Since the eguivalent error oo the right-hand side i= magnified
by the size of the spatial gradients, the threshold for identifying large residual errors should
be adaptive to the spatial gradients. Likewise, 1t was shown that the systematic measure-
ment errors ip the gradients were related to the second derivatives of brightness. so the
threshold on the residual should depend upon the second derivatives, as wel)

5.3. Methods

The gradient-based approach 1= demonstrated with two versions of the local optimiza-
tion techoique. The basic local optimization method performs & least squares minimization
on aL over-determined set of gradient constraint equations to estimate optical fiow at each
point. Each image is first blurred with a gaussian blurring function. The standard deviation
of the blurring function used to collect the dats presented here was about 2 pixels. The blur-
ring serves to reduce the noise in the image and linearize the brightness function.

Constraint equations from a group of peighboring points are gathered to produce an

over-determined system of linear equations of the form

Gw=-b (48)
where,
5 1] P
4 y t ll
G={. |,w=|,{adb=] |. (49)
1, 1 ]
[* 7 ] .

Each row of G and b, s evaluated at a diflerent point. To insure that the equations ar¢
sufficient]y distinct we selected neighbors from a 5x5 window centered around the point to

be estimated.
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It gepera. the cver-determinecd syeiem (4% bac nc exast BOluLIOL AL sLproximste
solution 15 found by micimizing the residua! vector . defined 1t (47) The Hov estimate 1
choser to be the vector « which minimizes some criteria function of v ln our work we

minimize | r | - by Jetting

w=G"b. (50,

where G” is the pseudo inverse of G [15,. Calculation of the pseudo inverse requires the
iversion of the 2x2 matrix G'G. The inverse will not exist where the local gradients do not
sufficiently constrain optical fiow to aliow for au exact solution. In this case the confidence
of the fiow estimate is set to zero and v and ¢ are undefined

A confidence is assigued to each fiow estimate on the basis of
(a) an estimate of the measurement error in the temporal gradient.
(b} an estimate of the conditioning.
(¢) the size of the residual vector r, and
(di  the a posteriori bound given by (46)
The importance of each of these factors in determining the accuracy of estimates is dis
cussed above. That analysis does not, however, provide us with a formula for estimating the

total error it the flow vector (v,r). We must find a means to combine several factors whickh
each indicate the presence of conditions which can be lead to errors.

Recall how each factor outlined above relates to the error in (v,r) The systematic
measurement error in the temporal gradient depends on the hnearity of the brightness fupec-
tion. The change in the spatial gradients between successive frames provides an indication of
the linearity of the brightness function over the region which has translated by a point [5.
To obtain an estimate of the contribution of this error to errors in &, we divide magnitude of
the change in the spatial gradients by the magnitude of the spatial gradient.

The error propagation characteristics of the linear system Gd = b can be determined by
examining the matrix of spatial gradients. lf linear system is ill-conditioned, small measure-

ment errors will tend to produce large errors in (&, ).

The residual vector indicates the degree to which the estimated flow vector jointly
satisfies the syvstem of copstraint equations. But the value of the residual vector is not easy
to interpret because the size of the residual is dependent of the overall magnitude of the
brightness gradients. We normalize the residual by determining, for each equation, the
minimum distance between the estimate and the equation. This is equal to the distance
between the estimate and the constraint equation along a line perpendicular to the constraint
equation that passes through the estimate. The average minimum distance is used as an

index of the degree to which the equations are satisfied.

Once an estimate has been obtained, the a posteriori error bound given by (46) can be

used to judge the accuracy of the estimate. In Jocations where this bound is large the com-

puted optical fiow vector is likely to be in error.
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Lact of tre meaturements desinibeg above proviar s 1bCe> o the expected of err - 1.
bow estimate The four erro estimstes are nos judepenaer: The residua’ errot anc tr-
posteriors bound measure the accumulative error. fronm. ali sc:urces. b the fow estimate T«
vanatl oL 1t the¢ spaua! gradient and the conditioning of G measure conditions which &
likely to Jead wo poor estimates nonhinearity 1o the spatial brightness function 15 particulariy

" troublesome¢ for gradient measurement and the conditioning of G conveys the error propaga-
tioL charactenstics of the Lnear system. Even though the four estimstes are not independen: ‘
we found that they were best treated as separate sources of information and best combined ‘
multiphcatively  We examined s number of combiuatior rules and found that the resuli-
were not highly sepsitive to the particular rule for combining error estimates A measure of
confidence was obtained from the inverse of the error esimates The confidence value car be

interpreted a< a rough measure of the likelihood that an optical iow estimate 1= correct

5.3.1. Local Optimization with Iterative Registration

Toe simple method of local optimization can be extended by s method of iterative
refinement Flow estimates are used to register the frame palr ou each successive iteratior of
the estimatior. procedure. 1t was earher showw that the measurement error in the temporal
gradient could be significantly reduced if the registration locally reduced the displacement of
the image frames Since the optical fiow field will usually contair variations. the predicted
registration wili differ across the image. To obtai & consistent hinear systen. & smali regiorn.
of the first frame must be registered with the second frame or the basis of the predicted fiow

at the point for which optical flow 1s to be esimated A system of hnear eguations i cor-
structed from the registered region.

This process can be performed iteratively, using the optical flow estimates at the previ-
ous stage to register the frame pair on the next iteration. It 1s important o emphasize that
at each stage. the registration can only be expected to improve performance when the pew
registration is an improvement over the registration 1o the last iteratior. Otherwise, the new
estimate of optical flow will, in general, be worse then the previous estimate. Since it ic
desirable to register the image only where the flow estimates are believed to be correct. we
register in proportion to the confidence in the fiow estimate. A flow field of zero flow vectors
1s used to initialize the first 1iteration.

The iterative registration techpique 1s emploved witl. variable blurring to produce =
coarse-to-fine svstem of analysis. Images are blurred with & gaussian weighting functior.  lu
early iterations the standard deviation of the gaussian weighting function 1s large  The stan-
5 dard deviation of the weighting function is reduced in each successive iteration. At eacl,
level, the radius of the blurring function should be large enough to guarantee that the bright-

ness function is approximately linear over the maximum expected flow from the registered

images.
The size of the neighborhood from which the constraint equations are selected must

depend upon the amount whick the images are blurred. At a coarse level of aualysis there i«




Ly

, 4T AT 4™ "

Rl

)

'~
.

’-
-
b
>.

AR AR

RSP - i U ad - "nd
N N T T e T g T ey

sufincntny efierent consirsr

ity detary which distinguistes mearty poirte T obts:

equations the SeparaliolL betweel ObRervalinn poiLte Must be ahirease 2 Olherwics the ¢ onc-
voning of the binear system will degenerat:
Our systen. contains four merations whick correspond 1o four level of coarsenes:  The

peighbor size and the value of the standard deviation for the approximation tc the gaussiar

" weighting function sre given iv table 2 for each of the four ierations

Iteratior | Blur Radius ¢ | Neighborhood Size
1 7 £
2 ) 4
3 3.9 3
4 2 2

Table 2 The coarse-to-fine analvsis

A difiiculty with the coarse-to-fine system is that the fiow estimates for stationary and
slowly moviug points made at coarse levels may be worse than the initially assumed zero vec-
tor. To insure that the pew fiow estimate made at one Jevel 1« not worse thar the value
wput into the level. we examine the error bound giver by (46) for both the initia! apd new
estimates. If the error bound for the new estimate 1s significantly larger than the bound for

the old estimate, it 1s 1gnored.

5.4. Results

The two methods described above were tested with the two image pairs presented in
Figure 2 lo the first sequence the camera was stationary. The two toy trains in the center
of the first image move toward each other ip the second image. The second sequence simu-
Jates a view from anp aircraft fiving over 8 city. The scene is actually a model of downtown
Minrpeapolis. (This picture originally appeared in Barnard’s thesis [18].)

The optical flow fields obtained with the simple local optimization technique are shown
in Figure 3.2 and Figure 3.b for the moving trains and fivover scenes Associated with each
vector is & confidence in the correctness of the value. A threshold on confidence was esta-
blished whick produced a reasonably dense sampling of mostly correct values. Only vectors
which exceeded the confidence threshold are displaved. The resulting field was too dense to
clearly display the entire field. Consequently, only 20% of the vector fields are shown in Fig-
ure 3

The results of the coarse-to-hine method of iterative refinement are shown in Figures 3.¢
and 3.d. Confidence thresholds were established which produced vector densities which were
comparable to that obtained with simple local optimization  Both techiniques produce rea-

sonably accurate results with the moving train sequence.
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the fivover sequence  The sumple local opuimization method produces s large pumber of :

errore ever for the relatively sparse samphog of vectors displaved i Figure 3.t Tue method i

of 1terative registration generated many fewer errors in helds which are muct more dens
than that obtained with the sumple local optimization approsct.

Note the areas where very few vectors are displaved. Optical fiow is poorly estimated 11,

thes- regions and low values of confidence are assigned to the estimates obtained there The

problematic regions are usually fit into one or more of the following characterizations

1. largely homogeneous regions,

o

highly textured regions which are moving. or
3 regions which contain large discontinuities ip the flow field.

Optical flow estimates obtained in homogeneous areas are likely to be in error because of the
poor conditioning of lLinear systems constructed in these regions. The temporal gradient is
poorly measured in highly textured regions which undergo significant motion. In regions
which contain large discontinuities in the flow field the temporal gradient is poorly estimated
and the syvstems of equations from the region are likely to contain inconsistencies.

The success with which confidence estimates predict the accuracy of fiow estimates is
demonstrated in Figure 4. Thbe flow field produced by the simple local optimization tech-
nique with the moving trains sequence is displayed in with a low threshold on confidence in
Figure 4.2 and a high threshold in Figure 4.b. As before, only 20% of the vectors which
exceed the threshold are displaved. Similar thresholds are shown for the method of iterative
registration in Figures 4.c and 4.d. For both methods confidence provides a reasonable index
of the accuracy of flow estimates. A sparse sampling of accurate estimates exceeds the high
confidence threshold. When the threshold is lowered, more dense fields are obtained with &

significantly greater number bad vectors.

6.5. Summary.

The gradient constraint is a powerful tool for the analysis of dynamic imagery. Careful
examinatiop of one gradient-based technique led to a number of conclusions about the causes
of errors, provided support for techniques to improve estimates, and indicated methods by
which the accuracy of estimates could be judged. This analysis suggests that optical flow
estimation should be adaptive to the nature of the brightness function and the characteristics

of motion in 8 region of the image.

d : : . : .
F The results demonstrate the feasibility of measuring the quality of optical flon esti-

5 mates. Gradient-based techniques are susceptible to a8 variety of problems and tend to pro-

" duce very poor estimates in troublesome areas of the image. Without accurate estimates of

" confidence, good estimates can not be distinguished from bad and gradient-based techpiques

’ are of little use. This work emphasizes the importance of understanding the mechanisms

v ) .

v which underlie computational methods. An awareness of the strengths and weaknesses of

-

vy

’

¥

F

":-\m.;-\“._;_"_.’ '(__-'__.- T e e e e e T T e e ettt e e e e
ot de 0 A R o SO S PP RN S -,l..-,!...I.:t:l_':j:;‘f:‘l.:-'.:\t,&‘:(;‘;‘:‘!‘;.:.:h}':.:’:.;.};.::l‘:'}}}:.:.'?:)}:\:‘;\_\:'_\;- } -




methods anc of the way 11 which they operate car lead w sdaptstyne arnc ertancemente

whick are of great practica’ value

Appendiz A. Optical Fiou Varation:

Several papers have examined the relationship between the three-dimensionsa! motion of
objects and observers and the characteristics of the optical fiow field. We will consider an
example which allows arbitrary three-dimensionsa! translation of a planar surface to demon-
strate the important factors influencing changes in optical fiow over the image.

Let the three-dimensional coordinate sysiem be attached to the camera as in Figure A}
which is redrawn from Longuet-Higgins and Prazdoy [19,. All motion is associated with the
camera. Let U, V, and W be the translational velocities of the observer in the X', ¥, and 2
directions. When motion is constrained to translation, the components of the three-

dimensional velocity vector are

X' =-U Y =-V 2" =-W. (A1)
Using a perspective projection, the position of an object point on the image is related to its
three-dimensional position by

z =L;: V=’L} (A2)

where f is the focal length of the camera. Velocity on the image plane, (v,r), at a point
(z,9)1s
w =z v =y'. (A.3)

Substituting from (A.2) into the right-hand side of (A.3) and differentiating we obtain

X' Xz -fU + W
and
.Y YZ' -V 4+ yW
'~][2"29]= Z (A.5)

Consider a point P, on the surface of a rigid body which projects to p, on the image.
We orient the coordinate system so that Pg lies on the observer’s line of sight. The three-

This coordinate transformatior 1= not strictly correct for a planar retina as picture m Figure Al
The change of coordinates can be justified in severa! ways It cap be assumed that the retina is
globally spherica! but can localiv be modeled as planar Or, it can be assumed that the distance o!
Po Irom the ongir 1= sufficiently small relative 1o the focal length that the distortion introduced by

the transform wil, be mimma! Or finally, we can simply Testnict our attention to points along the

line of sight




- -

Lani i M e o on g i SM MR o aea e

W

T T

VOV WS U N NN N Ty, s vV TV VYT Y XV Y YWY, Y. T v

-
-~

"o "q"". .

dimensions coordicates of Pe are (0.0.5) avd the positior of p. or the mmage 1 (06.0. W

assume¢ that the surface 1s planar 82 that
Z(XY)=F ~aX ~ 8Y (A6,
for points or the surface near P

Following Longuet-Higgins and Prazdny, we introduce the dimensionless coordinate
,=,.|22R]=m+ﬁ,. (A7)

The components of optical fiow formalized in (A.4) and (A.5) can be rewritten ac

oL [y (AS)
and
- )

The surface 1= assumed to be planar, so the derivatives of v and ¢ with respect to # and ¢

are wel]l defined. At the point p;,, where 2 =y = : = 0, « and ¢« are

- JU = 1Y |
v=--7 and ¢ i (A.10)

The derivatives of v and v are given by

aU+W sU
.= .\, =5 (A.11)
al BV+ ¥
v =5 and, t, = Vi (A12)
since
2, =a and 2z, =4 (A.13)

Recall that the error incurred by assuming constant flow could be treated as measure-
ment error in I, , on the right-hand side of (18). The magnitude of this error, relative to | is
strongly dependent on the ratio of the magnitude of the change in optical fiow to the magni-
tude of the flow vector. We can now express the ratio of change-of-flow to flow in terms of
the three-dimensional parameters of shape and motion, and the viewing angle. The change
in optical flow between two points separated by (Az,Ay) is

(Av,Av) = (Azu, + Ayy, Ay, + Ayr,). (A.14)

Inserting the appropriate terms from (A11) and (A.12) into (A.14) and dividing by optical
flow as given by (A.10), we arrive at an expression for the ratio of change-of-flow to fiow at a

[
L]

point:

[(ol’+“')A7 + ﬂUAy]

( ' aVAr + (BV+W)Ay (A.15)
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tan 4 = -—T~ . (A.18)
The angle 4 is the angle subtended by (Az,Ay) with a focal length of f ; this 1s simply the
size of the neighborhood measured in degrees of visua] angle. The length of the change-of-
flow vector relative to the length of the flow vector depends upon the size of the neighbor-
hood, the slope of the surface viewed, and the ratio of velocity along the hine of sight to velo-

city perpendicular to the line of sight.

2

(A 16,

where,
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Tagure Captlion:

1. The sampled image functior.

2. lmage Sequences.

3. Optical flow estimates.

4. The accuracy of confidepce <stimates. Optical flow
estimates exceeding low anc high thresholds on

confidence are displayed.

A.1 The camera-based coordinate systermn.
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Dynamic Occlusion Analysis in Optical Flow Fields

WILLIAM B. THOMPSON, MEmBE R, IEEE, KATHLEEN M. MUTCH, MEMBER, IEEE,

AND VALDIS A. BERZINS, MiMBER,

Abstract - Optical flow can be used to locate dynamic occlusion bound -
aries in an image sequence. We derive an edge detection algorithm sensi-
tive to changes in flow fields likely to be associated with occlusion. The
algonthm is patterned after the Marr-Hildreth zerocrossing detectors
currently used to locate boundaries in scalar fields. Zero-crossing de-
tectors arc extended to identify changes in direction and/or magnitude
in 2 vector-valued flow field. As a result, the detector works for flow
boundaries generated due to the relative motion of two overlapping
surfaces, as well as the simpler case of motion parallax due o a sensor
moving through an otherwisc stationary environment. We then show
how the approach can be extended to identify which side of a dynamic
occlusion boundary corresponds to the occluding surface. The funda-
mental principal involved is that at an occlusion boundary, the image
of the surface boundary moves with the image of the occluding surface.
Such information is important in interpreting dynamic scenes. Results
are demonstrated on optical flow fields automatically computed from
real image sequences.

Index Terms-Dynamic occlusion, dynamic scenc analysis. edge de-
tection, optical flow, visual motion.

I. INTRODUCTION

N optical flow field specifies the velocity of the image
A of points on a sensor plane due to the motion of the sen-
sor and/or visible objects. Optical flow can be used 1o estimate
aspects of sensor and object motion, the position and oricnta-
tion of visible surfaces relative to the sensor, and the relative
position of different objects in the field of view. As a result,
the determination and analysis of optical flow is an important
part of dynamic image analysis. In this paper, we develop an
operator for finding occlusion boundaries in optical flow fields.
We deal exclusively with dynamic occlusions in which flow
properties differ on either side of the boundary. The operator
is effective for both motion parallax, when a sensor is moving
through an otherwise stationary environment, and for more
general motion in which multiple moving objects can be in the
field of view. The multiple moving object situation is more dif-
ficult because boundaries are marked by almost arbitrary com-
binations of changes in magnitude and/or direction of flow.

Manuscript received June 1, 1984 ; revised February 14, 1985 Rec-
ommended for acceptance by W. E. L. Grimson. This work was sup-
ported by the Nationa! Science Foundation under Grant MCS 8105215
the Au Force Office of Scientific Rescarch under Contract F49620-83-
0140, and by Zonta International.
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The technique is extended so that a determination may be
made about which side of a dynamic occlusion boundary corre-
sponds to the occluding surface. Such a determination 15 of
great importance for interpreting the shape and spatial organi-
zation of visible surfaces. Results are demonstrated on real
image sequences with flow fields computed using the token
matching technique described in [1]. Rehability is obtained
by dealing only with methods able 10 integrate flow field in-
formation over relatively large neighborhoods so as to reduce
the intrinsic noise in fields deternuned from real mmage
sequences,

II. BOUNDARY DFTECTION

Conventional edge operators detect discontinuities in image
luminence. These discontinuities are difficult 1o interpret.
however, because of the large number of factors that can pro-
duce luminence changes. Boundaries in optical flow can arise
from many fewer causes and, hence, are often more informu-
tive, If a sensor is moving through an otherwise static scenc. a
discontinuity in optical flow occurs only if there is a discon-
tinuity in the distance from the sensor to the visible surfaces
on either side of the flow boundary {2]. Discontinuities in
fiow will occur for all wvisible disconunuities in depth, excepi
for viewing angles directly toward or away from the direction
of sensor motion. If objects are moving with respect to ane
another in the scene, then all discontinuities in optical flow
correspond either to depth discontinuities or surface bound-
aries, and most depth discontinuities correspond to flow
discontinuities.

The use of local operators to detect discontinuities in optical
flow has been suggested by others. Nakayama and Loomis [3]
propose a “‘convexity function™ to detect discontinuities in
image plane velocities gencrated by a moving observer. Their
function is a local operator with a center-surtound form. That
is, the velocity integrated over a band surrounding the center
of the region is subtracted from the velocity integrated over
the center. The specifics of the operator are not preciscly
stated, but a claim is made |3, Fig. 3] that the operator returns
a positive value at flow discontinuities. (In fact, most reason-
able formulations of their operator would yield a value of 0 at
the boundary, with a positive value to one side or thic other.)
Clocksin [2] develops an analysis of optical flow fields gen-
erated when an observer translates in a static environment. He
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ment, the magnitude of optical flow at a patticular image point
is inversely proportional to distance, and the distances can be
recovered to within a scale factor of observer speed. It is thus
trivial to determine which of two surfaces at an edge is occlud-
ing, for example, by simply comparing magnitudes of the two
surface velocities, even when observer speed is unknown.

For this restricted situation in which a sensor moves through
an otherwise static world
(%)

r(x)
where at an image point X, flow(x) is the optical flow (a two-
dimensional vector), f, is the component of the flow due to
the rotation of the scene with respect to the sensor, f, is de-
pendent on the translational motion of the sensor and the
viewing angle relative to the direction of translation, and 7 is
the distance between the sensor and the surface visible at X
{4]. For a fixed x, flow varies inversely with distance. Both
f, and f, vary slowly (and continuously) with X. Discontinu-
ities in flow thus correspond to discontinuities in 7. Further-
more, it is sufficient to look only for discontinuities in the
magnitude of flow. This relationship holds only for relative
motion between the sensor and a single, rigid structure. When
muluple moving objects are present, (1) must be modified so
that there is a separate £ {) and f{') specifying the relative mo-
tion between the sensor and each rigid object. Discontinuities
associated with object boundaries may now be manifested in
the magnitude and/or direction of flow.

Boundary detectors for optical flow fields should satisfy two
criteria: 1) sensitivity to rapid spatial change in one or both of
the magnitude and direction of flow, and 2) operation over a
sufficiently large neighborhood to reduce sensitivity 1o noise
in computed flow fields. It is desirable to achieve the second
criterion without an unnecessary loss of spatial resolution in
locating the boundary or a need for postprocessing to reduce
the width of detected boundaries. The zero-crossing detectors
of Marr and Hildreth [5] may be extended to optical flow
fields in a manner that achieves both objectives [6]. Forscalar
fields (e.g., intensity images), zero-crossing edge detection pro-
ceeds as follows. 1)Smooth the field using a symmetrical Gauss-
jan kernel. 2) Compute the Laplacian of the smoothed func-
tion. 3) Look for directional zero crossings of the resulting
function (e g., look for points at which, along some direction,
the function changes sign). Under a set of relatively weak as-
sumptions, these zero crossings can be shown to correspond to
points of most rapid change in some direction in the original
function. The convolution with a Gaussian provides substan-
tial noise reduction and, in addition, allows tuning of the
method for edges of a particular scale. Steps 1) and 2) involve
evaluating the function V2G = I, where G is a Gaussian kernel,
* is the convolution operation, and / is the original image. The
effect of the V2G operator can be approximated by blurring
the original function with two different Gaussian kernels of
appropriate standard deviation, and then taking the difference
of the result. This formulation results in computational simpli-
fications [7], [8] and also corresponds nicely to several phys-
iological models that have been proposed for early wisual
processing.

flow(X) = f(X)+ )
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The effect of this approacti 1s to identily edg” puints where
the intensity of the blurred image 1s locally stecpest. Mot
precisely, an edge can be defined as a peak in the first direc-
tional derivative, or as a zero crossing in the second directional
derivative. At an edge, the second directional derivative has
zero crossings in almost all directions, but the preferred direc-
tion is normal to the locus of the zero crossings, which is the
same as the direction where the zero crossing is steepest for
linearly varying fields [5]. For vector images such as optical
flow fields, the directional derivatives are vector valued. and
we want the magnitude of the first directional derivative to
have a peak.

This extension 1o two-dimensional flow fields is relatively
straightforward. The optical flow field is first sphit into sepa-
rate scalar components corresponding to motion in the x and
y directions. The 72G operator is applied to each of these
component images, and the results combined into a component-
wise Laplacian of the original flow field. (The Laplacian is a
vector operator which can be expressed in arbitrary coordinate
systems. For convenience, we choose a Cartesian coordinate
system.) This componentwise Laplacian operation is imple-
mented by subtracting two componentwise blurred versions of
the original. With the proper set of weak assumptions, discon-
tinuities in optical flow correspond to zeros in both of these
component Laplacian fields. At least one of the compunents
will have an actual zero crossing. The other will have either a
zero crossing or will have a constant zero value in a neighbor-
hood of the discontinuity. If the componentwise Laplacians
are treated as a two-dimensional vector field, discontinuities
are indicated by directional reversals in the combined field.
Because of the discrete spatial sampling and 2 vanety of noise
sources, the zeros or zero crossings in the two components of
the field may not actually be exactly spatially coincident. Thus,
exact reversal is not expected, and a range of direction changes
of about 180° is accepted. A threshold on the sum of the vec-
tor magnitudes at the location of the flip is used to ensure that
the zero crossing is of significant slope. This is analogous to
the threshold on zero-crossing slope which is often used in prac-
tice when zero-crossing techniques are used on intensity im-
ages, and serves to filter out small discontinuities.

The approximations made by the computations described
above will be good if the variation of the field paralle] to the
edge is much more uniform than the variation normal to the
edge. For scalar images, exact results will be obtained if the
intensity varies at most linearly along the edge contour [5].
For vector images, the field must vary at most linearly in some
neighborhood of the edge contour, so that the assumptions re-
quired are slightly stronger than for scalar images. Appendix [
contains the analysis for the case of vector images.

Two examples of this technique applied to real images are
shown below. In both examples, the objects are toy animals
with flat surfaces, shown moving in front of a textured back-
ground. In Fig. 1(a). the tiger translates parallel to the image
planc from right to left between frames 1 and 2. The elephant
rises off its front legs between frames 1 and 2, effectively ro-
tating about an axis at its hind feet oriented perpendicularly 10

the image plane. The elephant also translates shightly to the

left parallel 1o the image plane. The opuical flow vectors, shown
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o Fig 1 (a) Image pair. (b) Optical flow. (c) Detected edgc overlaid onto  Fig. 2. (a) Image pair (b) Opticalflow . (c) Detected edge overlaid onto
. flow field. (d) Dectected edge overlaid onto fust frame of sequence. flow field. (d) Detected edpe overlaid onto first frame of sequence.
»

1':. in Fig. 1(b), were obtained by relaxation labeling token match- overlaid on the original flow field, and in Fig. 1(d) the points
ing, as described in [1]. Notice that the flow vectors on the are overlaid in white on the first image of the pair. The edge
’ elephant and tiger have approximately the same magnitude but  points form a good boundary between the discontinuous opti-

differ in direction. Each component of this flow field was con-
volved with approximated Gaussians of standard deviations
3.65 and 5.77. The ratio of these standard deviationsis 1:1.6.
The two convolved flow fields were subtracted, and the re-
sulting vector field was searched for reversals in vector direc-
tion, A boundary strength threshold was chosen to eliminate
noise points due to small, local variations in estimated flow.
In Fig. 1(c), the points where reversals were found are shown
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cal flow vector fields [Fig. 1(c)] : but because these fields are
so sparse, the edge points match only the approximate loca-
tions of the true edges [Fig. 1(d)].

In Fig. 2(a), both the tiger and elephant are translating to
the right, parallel to the image planc between frames 1 and 2.
The flow field shown in Fig. 2(b) was obtained in the same
manner as in Fig. 1(b). The direction of the flow vectors on
both animals is approximately the same, but there is a dis-




Sk A

ol

N e N
A W L P AP
RN R I TR R TR W S WA

FHOMPSON er gl

continuity 10 magnitude.  Two Gaussian filtered versions of
the flow fields were obtained with standard deviations of 3.16
and S.16 a ratio of 1:1.6. The Jocations of vector reversals
resulting from differencing the two filtered fields are shown
in Fig. 2(c) and (d).

The width of the Gaussian kernel used in the V3G operator,
the density of the computed optical flow field, and the spatial
variability of flow all interact to affect the performance of the
boundary detection. As with the use of zero-crossing detectors
for scalar fields, it may be desirable 10 use a range of kernel
sizes and then combine the results to obtain a more robust in-
dicator for the presence of a boundary. While zero-crossing
contours are, in principle, connected, the use of a threshold
on the slope at the zero crossing results in some portions of
the boundary being missed. In practice, zero-crossing bound-
ary detection for both scalar and vector fields often requires
such thresholds to avoid significant problems with false bound-
ary indications in slowly varying regions of the fields. Work
still needs to be done on better techniques for selecting zero
crossings that correspond to true boundaries.

[l IDENTIFYING OCCLUDING SURFACES

When analyzing edges between dissimilar image regions that
arise due to occlusion boundaries, it is impaortant to determine
which side of the edge corresponds to the occluding surface.
Occlusion boundaries arise due to geometric properties of the
occluding surface, not the occluded surface. Thus, while the
shape of the edge provides significant information on the struc-
ture of the occluding surface, it says little or nothing about the
structure of the surface being occluded. In situations where a
sensor is translating through an otherwise static scene, any sig-
nificant local decrease in r in (1) increases the magnitude of
flow. Thus, at a flow boundary, the side having the larger mag-
nitude of flow will be closer, and thus will be occluding the
farther surface. Sensor rotation complicates the analysis, while
if objects in the field of view move with respect to each other,
there is no direct relationship between magnitude of flow and
r. Surfaces corresponding to regions on opposite sides of a
boundary may move in arbitrary and unrelated ways. However,
by considering the flow values on either side of the boundary
and the manner in which the boundary itself changes over time,
it is usually possible to find which side of the boundary corre-
sponds to the occluding surface, although the depth to the sur-
faces on either side cannot be determined.

The principle underlying the approach is that the image of the
occluding contour moves with the image of the occluding sur-
face. Fig. 3 illustrates the effect for simple iranslational mo-
tion. Shown on the figure are the optical flow of points on
each surface and the flow of points on the image of the bound-
ary. In Fig. 3(a), the left surface is in front and occluding the
surface to the right. In Fig. 3(b), although the flow values asso-
ciated with each surface are the same, the left surface is now
behind and being occluded by the surface 10 the right. The
occluding surface cannot be determined using only the flow
in the immediate vicinity of the boundary. The two cases can
be distinguished because, in Fig. 3(a), the flow boundary deter-
mined by the next pair of images will be displaced to the left,
while in Fig. 3(b) it will be displaced to the right.
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Fig 3. Optical flow at a boundary at two instants in ime. (a) Surface
to the left s in front. (b) Surface to the nght s in front.

To formalize the analysis, we need to distinguish the optical
flow of the boundary itself from the optical flow of surface
points. The flow of the boundary is the image plane motion
of the boundary, which need not have any direct relationship
to the optical flow of regions adjacent to the boundary. The
magnitude of the optical flow of boundary points paralle] to
the direction of the boundary typically cannot be determined,
particularly for linear sections of boundary. Thus, we will limit
the analysis in this section to the component of optical flow
perpendicular to the direction of the image of occlusion bound-
aries. As a result, if the flow on both sides of the boundary is
parallel to the boundary, the boundary will still be detectable,
but the method given here will provide no useful information
about which surface is occluding.

We can now state the basic principle more precisely. Choose
a coordinate system in the image plane with the origin at a pa:-
ticular boundary point and the x axis orierted normal to the
boundary contour, with x > 0 for the occluding surface. The
camera points in the = direction, and the image plane is at
z=0. Let fy(x, ») be the x component of optical flow at the
point (x, y). Let f, be the x component of the flow of the
boundary itself at the origin (i.e., f, is the image plane veloc-
ity of the boundary in a direction perpendicular to the bound-
ary). Then, for rigid objects,

fo= lim fx(x,0)=x(0,0). (2)

We will show that this relationship is true for arbitrary rigid
body motion under an orthographic projection. For a single
smooth surface, perspective projections are locally essentially
equivalent to a rotation plus a scale change, although the anal-
ysis is more complex. Equation (2) specifiesa purely jocal con-
straint and, as the limit is taken from only one side of the
boundary, is dependent on flow values on a single surface.
Thus, the limit result will hold as well for perspective projec-
tions. Algorithms which utilize the result in (2) may suffer,
however, if properties of more than a truly local area of the
field are utilized. The instantaneous motion of a rigid object
relative to a fixed coordinate system can be described with re-
spect to a six-dimensiona!, orthogonal basis set. Three values
specifly translational velocity, the other three specify angular
velocity. These six coordinates of motion can be conveniently
classified into four types: translation at constant depth, transla-
tion in depth, rotation at constant depth,and rotation in depth.
Translation at constant depth is translation in a direction par-
allel to the image plane. Translation in depth is translation per-
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pendicular to the image plane. Rotation at constant depth s
rotation around an axis perpendicular to the image plane. Ro-
tation in depth is rotation around an axis parallel to the image
plane. Any instantaneous motion can be described as a com-
bination of these four types. For orthographic projections,
translation in depth has no effect on the image. Thus, we need
to show that the above relationship relating boundary and sur-
face flow holds for the three remaining motion types.

A point on the surface of an object in the scene that projects
into a boundary point in the image will be referred 10 as a gen-
erating point of the occlusion boundary. The family of gen-
erating points defines a generating contour, which lies along
the extremal boundary of the object with respect to the sen-
sor. For both translation and rotation at constant depth, the
generating contour remains fixed to the occluding surface over
time. Thus, the boundary and adjacent points move with ex-
actly the same motion. As a result, the projection of the sur-
face flow in the direction normal to a particular boundary point
is identical to the projection of the boundary flow in the same
direction. (The result is strictly true only for instantaneous
flow. Over discrete time steps, boundary curvature will affect
the projected displacement of the boundary.)

The analysis of rotation in depth is complicated by a need to
distinguish between sharp and smooth occlusion boundaries,
based on the curvature of the occluding surface. The intersec-
tion of the surface of the object and a plane passing through
the Line of sight to the generating point and the surface normal
at the generating point defines a cross section contour. The
cross section contour and the generating contour cross at right
angles at the generating point. Sharp boundaries occur when
the curvature of the cross section contour at a generating point
is infinite. Smooth boundaries occur when the curvature is
finite.

Sharp generating contours will usually remain fixed on the
object surface over time. (Exceptions occur only in the infre-
quent situations in which, due to changes in the line of sight
with respect to the object, either sharp boundary becomes
smooth or a flat face on one side of the generating point lines
up with the line of sight.) Smooth generating contours will
move along the surface of the object any time the surface ori-
entation at a point fixed to the surface near the extremal bound-
ary is changing with respect to the line of sight. Fig. 4 shows
examples of both possibilities. The figure shows a view from
above, with the sensor looking in the plane of the page and the
objects rotating around an axis perpendicular to the line of
sight. In Fig. 4(a), an object with asquare cross section is being
rotated. Fig. 4(b) shows an object with acircular cross section.

For sharp boundaries, a surface point close to a generating
point in three-space projects onto the image at a location close
to the image of the generating point. The surface point and
the generating point move as a rigid body. For rigid body mo-
tion, differences in flow between the image of two points go
to zero as the points become coincident in three-space. As a
result, surface point. arbitrarily close to the generating point
project to the same flow values as the generating point itself.

For smooth boundaries, the situation is more complex. The
surface points corresponding to the boundary may change over
time, so that points on the surface near the generating point
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line of sight

Fig. 4. (a) Gencrating contour at a sharp boundary remarns fived to the
object surface. (b) Generating contour at a smooth boundary moves
relative to the object surface.

and the generating point itself may not maintain a fixed rela-
tionship in three-space. The property described in (2) still
holds for rotation in depth, however. The formal proof of
this assertion is relatively complex and is given in Appendix B.
(The Appendix actually shows that the limit of surface flow is
equal to boundary flow for rotation of smooth objects around
an arbitrarily oriented axis.) Informally, the result holds be-
cause the surface is tangent to the line of sight at the generating
point, so that any motion of the generating point with respect
to a point fixed to the surface is along the line of sight. The
difference between the motion of the surface near the generat-
ing point and the motion of the generating point itself is a vec-
tor parallel to the line of sight and, hence, does not appear in
the projected flow. This means that the motion of the bound-
ary in the x direction will be the same as that of a point fixed
to the surface at the instantaneous location of the generating
point. The limit property holds because the surface flow varies
continuously with x in the vicinity of the generating point, as
long as we restrict our attention to points that are part of the
same object.

To develop an algorithm for actually identifying the occlud-
ing surface at a detected boundary, we will start by assuming
only translational motion is occurring. (Violations of this
assumption are discussed below.) According to (2), we need
only look at the flow at the edge point and immediately to
either side to determine which side corresponds to the occlud-
ing surface. In practice, however, this in inadequate. Edges
will be located imprecisely in each frame due to a variety of
effects. This imprecision is compounded when the location of
edge points is compaied across frames to determine the flow
of the edge. By corsidering the pattern of change in the
Laplacian of the optical flow field, however, a simple binary
decision test can be constructed to determine which surface
velocity most closely matches that of the edge. As before, we
will use a coordinate system with its origin at the location of
some particular boundary point at a time 14, the x axis oriented
normal to the orientation of the boundary, and consider only
flow, , the projection of flow onto the x axis. In this new co-
ordinate system, positive velocity values will correspond to
motion to the right. We will assume that the flow field in the
vicinity of the edge can be approximated by a step function.
The algorithm developed here is unaffected by constants added
to the flow field or by applying positive multiples to the mag-
nitude of flow. Therefore, to simplify analysis, normalize the
flow field by subtracting a constant value f, such that the pro-
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such thet the mupmtudes will be normalized to Tand 1 [ice.,

Jhowy = g o, - 1)), The resutting step edee: can have one
of two possible shapes, depending upon whether the surface to
the lefi 1<, after scaling and normalizing, moving to the left or
to the right (see Fig. 5).

Wher the two possible velocity functions are convolved with
g Gatsaan blurring kernel, the 1esulting funcuony are shown
i Fre S5(2) and (b). The Laplacian of these Tunctions in the
direction perpendicular to the edge is equal to the second deriva-
tive. end 1s shown in Fig. 5(c) and (d). These two cases may
be descnbed analytically as follows,

Casc 1. Given the step funcuon

1. x<0
s(x)= (3)
-1, x>0
convolve stx) with a Gaussian blurring functon g(x).
Kyy=g» s 4)
Letsiv)=-2u(x)+ | where

0. x<¢Q
1. x>0.

u(xy)=

Then

Ly s ——= e .
() c3\/’—z( (6)

Therefore,
h'(x)<0 when x<0
f'x)>0 when x>0. 7)

Case 2 The step function for case 2 is - s(x).where s(x) and
u(x) are defined above

h"(.\')=0—;3\/_2—_r— e-x120? 9)
Thercfore,

A(x)>0 when x<0

Wi(x)<0 when x>0. 10)

At some later time f,, the entire second derivative curve
h"(x) will have shifted right or left, depending upon whethes
the edge muoves with the surface moving 1o the right or left.
Based upon the analysis above, in case 1, if the left surface
is occluding, the second derivative curve will be moving to the
right and the sign at the origin will become negative, while if
the right surface is occluding, the curve will be moving left and
the sign at the origin will be positive. In case 2, if the left sur-
face is occluding, the curve will be moving to the left and the
sign at the origin will be negative; while if the right surface is
occluding, the curve will be moving to the nght and the sigh

SR RS o

() (h)

Py & Smoothed miagnitude of o 101 (a) case b and by aase 20 (o)

and (d) Leplocian of the funcaens i Gy and (). () and (1) Two
possible Jocations of the Leplecwar carves after anntenal of ume
The dashed curveandicates the focation of the curve 1f the ¢dye moses
with the surfoce to the nglt, The selid cusvomdiioes i locstion ol
the curve ff the edge moseswatl tie santace te the ke

at the orgin will be positive. Note that in both cases, when
the Jeft surface is the occluding su-face, the sign at the origin
will become negative, and whei the nght surfz.e is occluding,
the sign at the origin wili becoinie positive.  This i¢ illustrated
w Figo Stey and (00 Bo the ongie!ounreteted ¢ ordimate o
ten, thes iy equivelont to steting thit gt e 7, the ditecuon
normal to the edge for which the second directional dervative
of optical flow is positive, evaluated at the locatior of the edge
at 1y, points toward the occluding surface. (The approach is
similar to that used in [9] to determine the direction of mo-
tion of an intensity contour.) This analysis may be extended
to the general case where the original step function has not been
normalized. The direction of th:e second derivative at r; must
now, however, be evaluated at the point (xg, vo) + (#) ~ 10)f,.
{As [, is the average flow of the surfaces on either side of the
boundary, this point may be thought of as lying half-way be.
tween the two possible image locations of the boundary at
time f,.)

In practice, difficulties may arise for very larpe differential
flows between the two surfaces. The second derivative function
h"(x) approaches zero away from the zero crossing. Noise sen-
sitivity of the classification technique is likely to increase when
the value is small. It is usefu] to determine a guideline for the
size of the Gaussian blurring kernel to ensure that the curve
will be observed near its extrema, where the sign is more likely
to be correct. The form of the function #"(x) may be simplified
by substitution for analysis purposes. Let

b=

X 2

and ¢ ———= . 12
PIVE] o Jr (2)
Then, in case 1,

K(x)= (b)) = chet (13)




Pala T a0y

¥
I‘A a8

“l'.l'.‘

LN

PR

LR

tele

LRIV PP T SNSACTHONS N} e i)

AR S N A (14)

The extrema of f{h) will occur at b = 2 l/\ﬁ .and the extrena
of h'(x)occur at x = #¢. The ratio

h'(2.70) _

12 '
o) 0 (15)

indicates that at *2.70 the magnitude of 4"(x) is 12 percent of
its magnitude at the extrema, and thus is relatively close to
zeru. I the noise is such that the sign will be accurate when
the expected Laplacian value is at least 10 percent of the ex-
trema value, then a Gaussian blurring kernel should be used of
standard deviation at least 1/2.7 of the maximum expected
magnitude of flow of the edge. For cases where the noise pre-
senty more of a problem, a Gaussian of larger standard devia-
tion should be used. The analysis for case 2 can be performed
similarly with the same resul:.

The algorithm is implemented as follows. Optical flow fields
are obtained for two temporally adjacent image pairs. Approx-
imation to the Laplscians of Gaussian blurred versions of these
flow fields are calculated by computing the difference of the
flow fields convolved with two different Gaussian kernels.
(Again, the componentwise Laplacian is used.) Asbefore,edge
points are found an the first flow field by searching for vector
reversals in the Laplacian of the field. Atsuch points, the value
of the smoothed flow field obtained from the larger of the
Gaussian kernels 1s considered to approximate the average flow
of the two surface regions on either side of the edge. This
average flow 15 used to find the appropriate offset to add to
the edge location to find P. a point midway between the two
possitle edge Jocztions in the second Laplaciar field. Next.
the diection perpendicular to the edge poirt is esiimated by
finding the direction of greatest change in the Laplacian of the
first flow field. The Laplacian of the second flow field at the
point P is then examined. The Laplacian component in the
second field perpendicular to the edge orientation points to-
ward the occluding surface.

An example of this technique applied to an image sequence
is shown in Fig. 6. The leopard translates from left to right
approximately equally between frames 1,2, and 3 in Fig. 6(a).
The edge points shown in Fig. 6(b) are obtained as described
in Section 1. At each edge point, an offset based on the flow
vector from the smoother version of the field at that point is
added to the location of the edge point. The resulting location
is examined in the Laplacian of the second flow field. The
component of this Laplacian perpendicular to the edge will
point toward the occluding surface. Shown in Fig. 6(c) are the
edge points, each of which has an associated line segment. The
line segment projects in the direction of the occluding surface,
as determhined by the algorithm. The correct classification is
made for all except a few points at the bottom of the edge. In
this region, several ncarby tokens were matched in one frame
pair but not the other, significantly affecting the smoothed
flow fields in the neighborhood of the boundary.

IV. ROTATIONAL MOTION

Rotation in depth introduces several complexities for the
analysis of optical flow at occlusion boundaries. The first is an
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T 6. (8) Imagc seguence. (b) Dectected boundary overlaid onto first
frame of sequence () Mdenubicanon of occluding surtae. Each edge
point has a linc segment projecting from it toward the occluding
surface.

unexpected corollary of (2): in certain situations, there is no
discontinuity in flow at occlusion boundaries. This occurs for
pure rotation in depth of objects that are circularly symmetric,
rotating about their axis of symmetry, and otherwise stationary
with respect to the background. In such cases, the image of
the boundary over time maintains a fixed position with respect
to the background. As a consequence of (2}, the projected sur-
face flows on either side of the boundary are identical and are
the same as the boundary flow itself. Fortunately, the zero-
crossing-based boundary detection method is still usually appli-
cable, although the detected location of the boundary may be
displaced.

The second comphcaiion involves the determination of oc-
cluding surfaces. Rotations in depth produce a dynamic self-
occlusion -the rotating object occludes sections of itself over
time. In the situation described in the previous paragraph, self-
occlusion is the only dynamic occlusion occurring. In these
circumstances, the relationship in (2) is of no direct value in
identifying the occluding surface. No information is available
on which side of the boundary corresponds to a true occluding
surface. (The situation is truly ambiguous in that two very dif.
ferent classes of spatial o1ganizations can produce the same flow
pattern.) If the rotating object is also translating relative to the
background, if the object is not rotationally symmetric, or if it
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18 not rotating ground an avis of symmetny | then (2) will,
principle, correctly identify the occluding surface. Difficulties
arise n practice, however, because the algorithm given ahove
depends on surface flow in the neighborhood of the boundary,
not just at the edge. In the presence of rotation in depth, mis-
classifications are possible, particularly if no translation relative
to the background is occurring and/or the rotating object is
small, leading to rapidly changing flow values near the extremal
boundary.

Rotation also complicates inferences about relative depth
based on the analysis of occlusion boundaries. For translational
motion, the occluding surface on one side of a boundary is nec-
essarily in front of the occluded surface. Forrotation in depth,
the occluded and occluding surfaces are on the same side of
the boundary, and no definitive information is available about
the surface on the other side of the boundary. (Reference
[10] shows an example in which a nonrotating surface on
one side of a boundary is in front of a rotating surface on the
other side of the boundary.) One approach to determining the
actual relative depth involves first determining whether or not
rotation in depth is actually occurring. Such as analysis is be-
yond the scope of this paper (see [11]). As an alternative, an
analysis of surface regions that ate appearing or disappearing
due to dynamic occlusion gives information about the occluded

surfaces at a boundary {10]. The method described here gives -

information about the occluding surface. By combining the
two approaches, self-occlusion is recognized by noting a bound-
ary where one side is marked as both occluding and occluded.

V. CONCLUSION

Motion-based boundary detection is sensitive only to depth
discontinuities and/or object boundaries. Thus, unlike inten-
sity-based edge detection, all detected edge points are of direct
significance to the interpretation of object shape. On the other
hand, significant edges will not be detected unless there is per-
ceived motion between the surfaces on either side. Motion-
based analysis offers another significant advantage. In most
cases, the side of a boundary corresponding to the occluding
surface can be identified. As we have shown, this is possible
for general motion, not just for a sensor moving through an
otherwise static environment. This determination is quite dif-
ficuli using only static information, and has received only little
attention (eg., [12)).

APPENDIX A

The following is an analysis of the appropriateness of using
zero crossings in the componentwise Laplacian of a flow field
to detect contours of maximal rate of change in the flow field.

Theorem: Let V be a twice continuously differentiable vec-
tor field, Jet N be an open neighborhood containing the origin
such that 3¥/dy is constant on N, let L be the intersection of
N and the y axis, and let u be 2 unit vector. Then [VV - ul?

81, al’ ]’
= u_‘—~a:_— 4""—87

V. a1} ?
2 2
- (15 (5]
x ox ox
av, av, av, avy]
== +—2 X
* 2uxk, [ ax oy ox 3y

V 2 Vv 2

w5 15]
3y 2y

o VBV

u, — - — f

Dy Bx Ty T

a7)

(18)

aV|?
ayl
(19)

derivative of this quantity can be simplified as

ax?

The partial
follows:

0 2 , [ oV an] [BV
— . = — b —— + . —
Py [VV -ul 2u,[ax P 2u,u, %

, al oV oK
= du, ux’a'*u}-s; : 3x?

= L9V 92_, 39
2u,(u - VV) Py (22)

since @¥/dy is constant on N'. For the same reason,3?1//9)? =
0 and 37V/ax? = UV, Therefore, 3/x |71 -u!? has a zero
crossing whenever u,(u - V1°) - V¥ does. But |V “u|? has
an extremum in the x direction whenever 9/0x ‘VV -u!’ has
a zero crossing. »

Whenever the Laplacian V¥ has a zero crossing, so must
u,(u-VV) - V?V, except when u (u - V¥)=0, which is un-
likely because real edges are places with steep gradients. Zero
crossings in the Laplacian will therefore almost always corre-
spond to extrema in the magnitude of the directional deriva-
tive, with respect to almost all directions. It is possible for the
magnitude of the directional derivative to have an extremum
without a zero in the Laplacian because the component at right
angles to the preferred direction defined by u - VV need not
be small. If there is no variation of the field paralle] to the
edge, then the steepest directional derivative occurs in the direc-
tion normal to the edge, and if the variation parallel to the edge
is much less than that normal to the edge, as we expect for
most images, then the steepest directional derivative occurs in
a direction nearly nommal to the edge. If we choose u in the x
direction, then u - V¥ will be parallel to 8¥/3x, so that the
sbove theorem states the component of the Laplacian in the

direction parallel to the difference in the flow on both sides

~, i irecti L if and only i

b ! :las ;"Ve’f‘;e;r;,u: n zfehrix :sx;ie:u(c)): Lon if-and only if u, of the boundary will have a zero crossing. The Laplacian can
N urve ) . asa cr £ s . fail to have a direction reversal at an edge only if the compo-
'\ Justification: The magnitude of the directional derivative in . . . ,
x the u direction is nent of the Laplacian at right angles to the flow difference is
~ not small, which occurs when the normal component of the

{VV . ul’ =(VV, -u)’ + (VV, -u)? flow gradient at an edge is changing in direction more rapidly

(16)
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e than it is changing in magnitude. Such situations do not appear [p(0,¢) n]l=ny sin¢costtnysingsinb+n, cosg [
:' to be common in real optical flows, and can occui only when R
':}' the unfiliered flow is changing appreciably in a neighborhood (26)

of the edge for at least one of the two surfaces. For the case  where p is the unit vector parallel 10 p. Since the generating
A of a boundary between two surfaces with distinct uniform point is on the extremal boundary of the object, x must have
.:: flows on each surface, the smoothed Laplacian has a directional an extremum at the generating point for variations in both 0
E,\x: 2ero crossing in all directions except along the boundary. In and ¢. This leads to

o that direction, the value of the smoothed Laplacian is zero.
hh | ed Laplacian s ax ___R(E-,¢)
The extremum can be either 2 maximum or a minimum. A =0= [p(8, ) n)

maximum is of course desired, and minima are discarded in a0 a6

8 o

o practice by requiring the slope of the zero crossing to be suffi- F)

e ciently steep. While this is not a guaranteed test, it works in tR(0-V,¢) FY) (p(0,9) n) (27)
:-::: almost all cases because of the Gaussian filtering applied to

" the images before the Laplacian is calculated. Minimainthe — 3x _ ., _9R(6 - v.9) (p(6.6) -n]

P gradient usually correspond to areas where the field is uniform, ¢ ¢ P,

! and due to the tails on a Gaussian curve, gradients near the 3

.. minima tend to be small, with small values for derivatives of +R(O-v,¢) — [p@,¢) n] (On)
- all orders. 3

e APPENDIX B for 0 =6,,¢=¢,. Let x, denote the x coordinate of the gen

]

erating point. From (25), the flow of the boundary 1 4

6=fg. C= C‘K]

This Appendix contains the analysis showing that the limit
of surface flow is equal to boundary flow for the rotation of follows:
smooth objects for orthographic projections. Any motion of a d d
rigid body can be described by giving the trajectory of an arbi- Ih= —£ = [E R(6 - v.,0¢) [p(6,0) n)

trary point attached to the body and the instantaneous rotation dr
about some axis passing through that point. Define a set of (>
Cartesian axes (X, Y, Z) with the origin at the distinguished .
’ ’ - d
point on the body and with the Z axis along the axis of rota- = RO - v.¢) [p6,¢) n] [ﬁ - Q]
tion, and let (r, 6, ¢) be spherical coordinates with respect to o6 dr d
these axes. Let the orientations of the axes (X, Y, Z) be fixed Py db,
with respect to the axes (x, y',z) of the image plane coordinates, +R 36 [p(6.¢) n) ar
so that the angular velocity of an arbitrary rotation is the same
in both coordinate systems. Let the surface of the body be OR(6 - v, ¢) dog
described by YT el
“~ = -
Ny r=R(6 - v(1),¢) (23) d d¢
+R — [p(6,¢)-n) —* ()
o where $(0) =0, so that r=R(8, ¢) at time ¢ = 0. The param- 3¢ dr
::,. etera=6 - w(t)_ is the lon'gitudir.lal angle of a point fixed to i 1ua1ed at 6 = 8,6 =¢,. From (27),(28),and (26) we po:
L\; the surface at 7= 0, and points with constant values of a and
. ¢ rotate alung with the surface. Since 8 = a + Y(r), w=dy/dt 1 =- dy OR(6 - ¥,¢) (2060, ) - n]
E“. gives the angular velocity of the object about the Z axis. b dt a6 P
lj:' At some particular instant of time, let G be a generating point d 5
._.:: (r4. 65, ¢g) and n be the unit surface normal at G. Since G is a = @ R — [p(6,9) -n] Q)
.L-;.j generating point and orthographic projection is involved, n will dr 96

n

be parallel to the image plane. The normal component of the
flow for an arbitrary point p = (r, 8, ¢) fixed to the surface is
as follows:

xy
L

WRO; - ¥,¢)sin¢[-nx sinb, +ny cosBg]  (32)
fx(0,0) (33)
using (24) and dy/di = w. This establishes (2) for arbitrary

7T
M
"

') ..0 ..l

" fx(p)= (X p) n oA ) c .
o ' _ orientations of the axis of rotation with respect to the image
v =wR(® - ¥, ¢)sin¢[-ny sin b +ny cos ¢} (24)  plane, assuming an orthographic projection.
:'f: where £) is the vector angular velocity of magnitude w and
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Analysis of Accretion and Deletion at Boundaries
in Dynamic Scenes

KATHLEEN M. MUTCH, MeMBER, 1EEE, AND WILLIAM B. THOMPSON, MEMBER, IEEF

Abstroct—In dynamic scenes, the presence of object boundaries is
often signaled by the appearance or disappearance of occluded surfaces
over time. Such regions of surface accretion or deletion can be found
using matching techniques similar to those used to determine optical
flow in an image sequence. Regions in one frame that are not ade-
quately matched by any region in previous frames correspond to accre-
tion. Regions that have no matches in subsequent frames correspond to
deletion. In either case, an occlusion boundary is present. Further-
more, by associating accretion or deletion regions with a surface on one
side of a boundary, it is possible to determine which side of the bound-
ary is being occluded. This association can be based purely on visual
motion—the accretion or deletion region moves with the same image
velocity as the remaining visible surface to which it is attached.

Index Terms-Dynamic scene analysis, edge detection, occlusion, op-
tical flow, segmentation.

1. INTRODUCTION

OCATING object boundaries in images is an important
Lbul difficult problem. Intensity-based edge detection
provides ambiguous or misleading boundary information in
many situations. such as textured regions. Motion-based tech-
niques can provide more reliable results in these cases. At ob-
ject boundaries where occlusion occurs, surface regions will
typically appear or disappear over time when motion is pres-
ent. These regions of changing visibility may be used to in-
dicate both object boundaries and the side of the boundary
corresponding to the occluded surface.

At a typical object boundary, one surface will be blocking
the view of another more distant surface. In the presence of
motion, regions of the more distant surface will often either
appear or disappear from view over time. Such regions are
called areas of accretion or deletion, respectively. A similar
situation ariscs in stereo vision, where a region of the more
distant surface near an occlusion edge will be visible in one
image of the pair but invisible in the other image. Thus, recog-
nition of accretion/deletion regions is a means of Jocating ob-
ject boundaries in image sequences. In addition, accretion and
deletion regions will belong to the occluded surface, providing
sufficient information to determine which of the two surfaces

Manuscript received April 30, 1984, revised October 22, 1984. Rec-
ommended for acceptance by Ruzena Bajcsy. This work was supported
in part by the National Science F'oundation under Grant MCS-81-05215.
the Air Force Office of Scientific Research under Contract F49620-83-
0140, and by Zonta International

K. M. Mutch is with the Department of Computer Science, Arizona
State University, Tempe, AZ 85287,

W. B. Thompson is with the Department of Computer Science, Uni-
versity of Minnesota, Minneapolis, MN 55455

at a boundary is being occluded. To recover the information
available from such regions, it is necessary to determine both
how regions of accretion and deletion in the imagery may be
identified, and what characteristics of such regions permit
identification of the occluded surface.

This paper describes a scheme to locate regions of accretion
and deletion, and to identify occluding surfaces at a boundary
using these regions. A technique which matches image fea-
tures in two frames is used to determine feature displacement
on the image plane. Areas in the image with a high percentage
of features which are unmatchable in a previous or subsequent
image are identified as accretion or deletion regions, respec-
tively. These regions indicate the presence of an occlusion
boundary. Since the accretion/deletion region belongs to the
occluded surface, it will be displaced on the image plane in the
same fashion as nearby arcas of that surface. The occluded
surface is then identified by determining which of the two sur-
faces adjacent to the accretion/deletion region displays a simi-
lar displacement on the image plane. This identification com-
bines information about accretion and deletion with optical
flow to produce a description of the occlusion boundary more
complete than any existing technique based purely on flow
alone.

11. PREVIOUS WORK

Several research efforts in computational vision have utilized
motion information to recover object boundaries. The basic
idea behind most motion-based approaches is that image plane
motion, or optical flow, across the object surface will be con-
stant or slowly varying, and discontinuities in flow will occur
only at object edges. Previous approaches either search for
discontinuities in the optical flow, or group together regions of
similar flow. Nakayama and Loomis [1] propose a local,
center-surround operator for detecting object boundaries in
flow fields. Clocksin [2] shows that zero<crossings will occur
at edge locations in the Laplacian of the magnitude of the
optical flow field when an observer translates through an
otherwise static environment. Thompson et al. {3), [4] dem-
onstrate that the Laplacian is useful as an edge detector in the
more general case of unconstrained motion. After obtaining
point velocities by template matching, Potter [S] groups all
points with the same velocity into single object regions. Simi-
larly. Fennema and Thompsen [6] use the spatial and tem-
poral gradients of intensity to obtain point velocities. and then
consider all points with similar velocities to be part of the
same object.  Thompson [7] develops a grouping scheme
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buascd upon bothointensity and veloaty information. Regions
of bath adentical intensity and identical veloaty are formed,
followed by merging of adjacent regions based upon similan-
ties. or at feast fack of conflict, in intensity and velocity . With
the exception of Clocksin's work [2]. these flow-based tech-
niques are unable to provide any indication of the occluded
surface at an edge.

Accretion and deletion are fundamental to motion analysis
based on differencing (8], [9]. These techniques subtract one
image from another and then use the presence of regions of
significant difference to infer properties of object boundaries
and motion. The approach is most effective when a reason-
ably homogeneous object is moving relative to a homogeneous
background with different luminence. Covering and uncover-
ing of the background leads to significant differences between
frames, allowing boundaries 1o be located. Analysis of these
difference regions over time can often be used to associate the
difference region with adjacent, nonchanging areas of the
image sequence and thereby identify which side of the bound-
ary is being occluded. This scheme is intensity based, and
suffers when intensity contrasts occur that are not related to
object structure. A textured object which changes location on
the image plane, for example, will produce many regions of in-
tensity difference which are not accretion or deletion regions.

Only limited experimentation has been directed at the role
of accretion and deletion in human perception. Kaplan [10]
showed that patterns of accretion and deletion in fields of
moving random dots provide sufficient information for the
judgment of relative depth by human subjects. In his stimuli.
a single edge separated two regions of random dots. where
each region moved coherently. The edge was implicit. being
the line along which accretion and/or deletion occurred, and
thus was not visible if all of the dots were stationary. Subjects
consistently perceived the more distant surface to be the one
which was undergoing accretion or deletion at a greater rate.
This was true even when the implicit edge moved with a ve-
locity different than the velocity of points on either surface.
In these cases of inconsistent edge motion, there was more
ambiguity in the perceptions of subjects, although the statis-
tically significant perception was that the surface with a
greater rate of accretion or deletion was more distant. This
suggests that both edge velocity and accretion/deletion are im-
portant factors in the perception of depth at an edge, but that
accretion/deletion information may be dominant.

HI. DETECTING ACCRETION/DELETION REGIONS

A motion-based scheme for identifying accretion and dele-
tion regions is developed here. To recover motion on the
image plane, corresponding structures in each frame of an
image pair are Jocated. The result of this is a disparity vector
field, where each vector represents the change in image plane
location of a structure. (Disparity is the discrete representa-
tion of optical flow arising from image sequences that are dis-
cretely sampled in time.) This correspondence is accomplished
by token matching. A token is a distinctive region in the
image which is identificd by some predefined local operator.
A sct of tokens is obtained for each image in the pair.and an

Fig. 1. Location of an accretion/deletion region relative to the bound-
ary indicates the direction of the occluded surface. In both cases
shown sbove, the vertical linc represents a boundary and the shaded
area Icpresents an accretion or delction region. The arrow points
toward the occluded surface.

organized search is performed to match tokens from the first
image to corresponding tokens in the second image using the
relaxation labeling technique described in [11]. Possible
matches between tokens in the two frames are evaluated based
on two criteria: the similarity between properties of the
tokens, and a surface smoothness measure that favors matches
with disparities similar to neighboring tokens. An important
aspect of this particular matching technique is that it can
determine that a token in one frame is unmatchable if no
token in the other frame satisfies the appropriate matching
criteria. By basing the analysis on the motion of tokens in the
image. many of the intensity contrast problems of a differ-
encing system are circumvented.

Regions of accretion and deletion are identified by analyzing
unmatchable tokens in either image. A token may not be
matchable either because the token detector failed to find the
corresponding structure in the other image of the pair, or
because the corresponding token is not visible in the other
image. Regions with a high ratio of unmaichable tokens 1o
total tokens are likely to be regions of accretion or deletion.
This motion-based. token-matching approach is an implemen-
tation of Kaplan's model for detecting such regions [12].
Kaplan argues that accretion and deletion are detected in the
human visual system by isolating clusters of elements of opti-
cal texture, tracking them over time. and responding when
they change in some way that is not topologically permissible.
Token identification is equivalent to isolating elements of
optical texture; token matching serves the purpose of tracking
such elements over time; and analyzing unmatchable tokens is
a response to some change which may be due to appearance or
disappearance of a region.

IV. IDENTIFYING OCCLUDED SURFACES

Not only can accretion/deletion patterns be used to locate
boundaries, they provide information that allows the identifi-
cation of the side of the boundary being occluded.  Such
information is beneficial when interpreting dvnamic scenes.
Several specific approaches are possible. though all are based
on associating the accretion or deletion region with a surface
on one side of the boundary. That surface is the one being oc-
cluded. One approach relies upon the relative location of the
accretion/deletion region with respect to the precise position
of the image of the boundary. This boundary iy the actual
point of occlusion, the accretion/deletion region being on the
same side of the boundary as the occluded surface.  Fig. 1
illustrates this concept.  The primary difficulty in this ap-
proach is identifying the boundary location relative to the
aceretion/deletion region. In partivular. motion-based edge de-
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\?, ‘. S dicular to the edge, there will be no accretion or deletion regions.
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Fig. 2. The location of new accretion/deletion regions relative to pre-
vious such regions indicates the direction of the occluded surface.
The second accretion region appears to the opposite side of the first
accretion region as the occluded surface. The second deletion region
occurs to the same side of the first deletion region as the occluded
surface.

tection cannot locate the boundary precisely enough without
first knowing which surface is occluded. The inadequacies of
intensity-based edge detectors for this purpose are well known,
particularly when applied to textured surfaces.

An alternative approach involves identifying the location of
an accretion or deletion region relative to the location of such
a region at a previous instant in time [13]. New accretion
regions will appear to the side of previous accretion regions
opposite the remainder of the occluded surface. New deletion
regions will occur on the same side of previous deletion regions
as the occluded surface (see Fig. 2). A disadvantage of this
approach is the necessity to track and locate whole accretion/
deletion regions over time.

The approach for identifying occluded surfaces from ac-
cretion/deletion regions which is developed in this paper re-
quires the recognition of similarities between such regions and
one of the two surfaces on either side of the boundary. Since
the accretion/deletion region belongs to the occluded surface,
it will share certain properties with that surface. The common
property could be intensity or texture, although the problems
inherent in most intensity-based analyses make these alterna-
tives undesirable. Once again, motion-based properties may be
more reliable. One such property is the disparity of tokens on
the image plane. Disparity varies slowly over the surface of
almost all rigid objects. Accretion or deletion tokens will thus
exhibit disparities which are nearly identical to nearby token
disparities on the same surface, while token disparities on dif-
ferent surfaces will usually vary,

V. IMPLEMENTATION

The system which was developed to detect occluded surfaces
from regions of accretion or deletion uses token matching to
obtain disparity vector fields. Unmatched tokens in clusters of
high density are classified as accretion or deletion tokens, de-
pending upon whether they have matches in subsequent or
previous frame pairs. The disparity of accretion tokens after
their appearance, or of deletion tokens prior to their disap-
pearance, is obtained. Nearby tokens which are not accretion
or deletion tokens and which have known disparities are iden-
tified and are used to identify the surface to which the accre-

tion or deletion tokens belong. Such tokens with similar dis-
parities to an accretion or deletion point lie on the occluded
surface.

Three frames in an image sequence are required. Disparity
fields D1 and D2 are obtained for frames | and 2, and for
frames 2 and 3, respectively. Accretion points are not visible
in frame 1, but do appear in frames 2 and 3. Tokens first ap-
pearing in frame 2, and thus having no associated match in
frame 1, are noted. If these tokens have a match in frame 3,
and if they are in a region with a high ratio of such tokens to
total tokens, they are considered to be points of accretion.
The disparity of accretion points is provided by D2. For every
accretion point, a search is made within a neighborhood about
the point location in frame 2. Tokens which are matched in
D2, but which are not marked as accretion points are found.
All of these tokens which have disparities similar to the accre-
tion point are considered as a cluster. A vector pointing
towards the canter of the cluster is assigned to each accretion
point. and indicates the direction from that point to the oc-
cluded surface.

Deletion points are visible in frames 1 and 2, but not frame
3. Tokens which are indicated as unmatchable in frame 2 are
noted. If these tokens have a match in frame 1 and if they are
in a region with a high ratio of such tokens to total tokens,
they are considered to be points of deletion. The disparity of
deletion points is provided by D1. For every deletion point,
a search is made within a neighborhood about that point loca-
tion in frame 1. Tokens which are matched in D1, but which
are not marked as deletion points, are found. All of these
tokens which have disparities similar to the deletion point are
considered as a cluster. As before, a vector in the direction
of the center of the cluster is assigned to each deletion point
and indicates the direction from that point 1o the occluded
surface.

VI. LIMITATIONS

This boundary detection technique requires a moderately
dense token set, both to find accretion/deletion regions, and
to determine image-plane displacements. This means that the
two surfaces adjacent to the edge must be distinctly textured.
In addition, there must be some component of optical flow
perpendicular to the occlusion boundary, or neither accretion
nor deletion will occur. In particular, motion exactly parallel
to the boundary will produce no accretion or deletion regions
(sec Fig. 3). Perspective viewing of translating objccts in prin-
ciple leads to difficulties similar to those associated with rota-
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Fig 4. (a) Overhead view of a cylinder rotating counter<lockwise
about an avis at (. in front of a stationary background B The
viewer is at A, and the linc of sight is along the dotted line. (b) The
rotating cylinder seen through an aperture in surface B which js now
in front. (c) When either (a) or (b) are viewed from point 4, ac-
cretion regions a will occur along the left edge on the cylinder, dele-
tion regions d along the right edge. While the cylinder is correctly
identified as the occluded surface, there is insufficient information to
determine the relative depth between the cylinder and the surface
atB.

tion in depth (see below), as the perspective effects can be
locally described as a combination of rotation and scale
change.  Fortunately, the practical difficulties caused by per-
spective effects are minimal. When objects are translating in
front of a background, the size of accretion/deletion regions
due to translation is almost always much greater than accre-
tion/deletion regions that appear due to effective rotation of
the object.

Certain rotations lead to potentially confusing situations
when analyzing occlusion boundaries. Fig. 4(a) shows an
overhead view of a cylinder rotating in depth. Fig. 4(c) shows
the accretion/deletion regions that arise if there is no relative
motion between the cylinder and the background surface.
The analysis above assigns the accretion and deletion regions
to the cylinder. Thus, the cylinder, not the background sur-
face. is indicated as the surface being dynamically occluded.
This is the correct interpretation, as the rotation in depth
causes the cylinder to occlude itself over time. However, while
the dynamic occlusion is correctly recognized. no information
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Fig. 5. Image sequence in which the Jeopard 1 translating from left to
right.

is directly available about the relative depths te the surfaces on
either side of the boundary. In fact. it is pussible that the sur-
rounding surface in the image is actually in front of the cyl-
inder [Fig. 4b)}, yet generates the same image scquence,

A different complication occurs if the rotating object is
moving with respect to the background surface, the cross
section of the object is not circular. or the object is not rotat-
ing about its axis of symmetry. In all of thesc situations, ac-
cretion and/or deletion will be occurring on both sides of the
actual boundary. The method given above is still valid and will
identify both sides of the boundary as occluded surfaces. The
problem again arises when trying to infer relative depth given
an identification of the occluded surface. The determination
of relative depth at a dynamic occlusion boundary when rota-
tion is occurring is made possible by combining accretion/dele-
tion analysis as described in this paper with an optical flow
based approach {4]. This second technigue uses the relation-
ship between the flow of a boundary and the surface flows on
either side of the boundary to identify occluding surfaces.
Accretion/deletion analysis Tocates occluded surfaces. When
taken together, both the occlusion of une surface by another
and the self-occlusion resutling from rotation i depth can be
recognized and appropriately interpreted.

Vil. EXAMPLE

The system implementation described above was applied
twice to the image sequence shown in Fig. 5. first processing
the sequence in the order shown, then in the reverse order. All
images had a resolution of 128 X 128. There were approx-
imately 1000 tokens identified in each image, and over 800 of
these were matched in every image pair. As is usual with
token matching systems. the density of tokens (and thus dis-
parity vectors) varied across the image, being higher in areas of
fine texture. An 11 X 11 square neighborhood, centered at
the unmatched point. was used for computing the density of
unmatched tokens. This size was chosen to be small enough so
that most of the neighborhood fell within the accretion/dele-
tion region, yet big enough to contain a reasonable number of
tokens (usually 6 to 12). If 80 percent of the tokens in this
neighborhood were unmatched in the same way as the point
under consideration. then the point was labeled “accretion™ or
“deletion.”  This ratio was chosen to be selectively high, and

yet to allow for some incorrect matches in the neighborhood,
or some extension of the neighborhood out of the aceretion,
deletion region. A 31 X 31 window. centered at the accre-
tion/deletion point, was scarched to find clusters of similar
disparity vectors. This size was chosen 1o be large enough 10
include portions of both surfaces outside the accretion/dele-
tion region. yet not so large as 1o extend bevond these sur-
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‘.:- Fig. 6. (2) Results of occluded surface determination based upon accre-

3 tion/deletion regions for the sequence of three frames in Fig. §.
Squarc white boxes are locations of accretion or deletion points in

i! frame 2. The linc emanating from each box points in the direction of

-~ the occluded surface. (b) Results of occluded surface determination

N when the sequence of three frames in Fig. § is processed in the reverse

.: order.
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v faces. Disparity vectors were considered “similar™ if they

differed by no more than 2 pixels in each of the x and y com-

>
X ponents. The actual values of most of these parameters will.
X in general, depend upon factors such as the resolution of the
:\ images, the amount of texture, and the maximum expected
:. disparity.

The results of processing in the forward direction are shown
in Fig. 6(a). All of the square white points represent aceretion
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or deletion frame 2 tohens, which were matchod 1 the second
(D2) or first (D1) disparity ficld.  The bne which emanates
from each box projects toward the surface which the algo.
rithm indicates is being occluded. The set of tokens to the
right of the leopard are deletion puints. Tokens near the left
border of the image are accretion points, which appear as more
of the leopard moves into the field of view. Vectors associated
with these points indicate that the leopard is being occluded
by the surrounding frame. Except for six noise points, all ac-
cretion and deletion tokens have an associated vector point-
ing in the correct direction. The noise points are not in the
accretion or deletion regions, but rather occur in or near un-
textured regions, or on the edge of the accretion/deletion re-
gions. As a result, therc are either no other tokens in the
vicinity, or else a large number of unmatched tokens in the
neighboring accretion/deletion region. These points are thus
incorrectly identified as accretion or deletion points.

Fig. 6(b) shows the results when the image sequence of Fig.
S is processed in the reverse order. The disparity field D1 is
now the set of matches for frames 3 and 2, and D2 for frames
2 and 1. Tokens to the right of the leopard are now accretion
points, and tokens near the left border of the image are dele-
tion points. Once again, except for nine noise points, all
vectors correctly point toward the occluded surface. The noise
points are due to the same causes described in the previous
paragraph,
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